Strange IndiaStrange India


  • Kistler, S. S. Coherent expanded aerogels and jellies. Nature 127, 741 (1931).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Aegerter, M. A., Leventis, N. & Koebel, M. M. Aerogels Handbook (Springer, 2011).

  • Zu, G. et al. Nanoengineering super heat-resistant, strong alumina aerogels. Chem. Mater. 25, 4757–4764 (2013).

    CAS 
    Article 

    Google Scholar 

  • Wang, H. et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small 14, 1800258 (2018).

    Article 
    CAS 

    Google Scholar 

  • Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xu, X. et al. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater. Today 42, 162–177 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, E. et al. Insulating and robust ceramic nanorod aerogels with high-temperature resistance over 1400 °C. ACS Appl. Mater. Interfaces 13, 20548–20558 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wong, J. C. H., Kaymak, H., Brunner, S. & Koebel, M. M. Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous Mesoporous Mater. 183, 23–29 (2014).

    CAS 
    Article 

    Google Scholar 

  • Soleimani Dorcheh, A. & Abbasi, M. H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199, 10–26 (2008).

    CAS 
    Article 

    Google Scholar 

  • Dou, L. et al. Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl. Mater. Interfaces 11, 29056–29064 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Su, L. et al. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 11, 15795–15803 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, H. et al. Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci. Adv. 3, e1603170 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Si, Y., Wang, X., Dou, L., Yu, J. & Ding, B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Si, Y., Yu, J., Tang, X., Ge, J. & Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Three-dimensional reticulated, spongelike, resilient aerogels assembled by SiC/Si3N4 nanowires. Nano Lett. 21, 4167–4175 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Si, Y. et al. Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512–9518 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, G. et al. Boron nitride aerogels with super‐flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 29, 1900188 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xue, Y. et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 11, 558–568 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xu, X. et al. Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chhowalla, M. & Jariwala, D. Hyperbolic 3D architectures with 2D ceramics. Science 363, 694–695 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dou, L. et al. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility. Adv. Funct. Mater. 30, 2005928 (2020).

    CAS 
    Article 

    Google Scholar 

  • Su, L. et al. Highly stretchable, crack-insensitive and compressible ceramic aerogel. ACS Nano 15, 18354–18362 (2021).

    CAS 
    Article 

    Google Scholar 

  • Zhang, X. et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 °C. ACS Nano 14, 15616–15625 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tong, Z. et al. Si3N4 nanofibrous aerogel with in situ growth of SiOx coating and nanowires for oil/water separation and thermal insulation. ACS Appl. Mater. Interfaces 13, 22765–22773 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Su, L. et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv. 6, eaay6689 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jia, C. et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chabi, S., Rocha, V. G., Garc, E., Xia, Y. & Zhu, Y. Ultralight, strong, three-dimensional SiC structures. ACS Nano 10, 1871–1876 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zheng, X. G. et al. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotechnol. 3, 724–726 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goodwin, A. L. et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319, 794–797 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xu, C. et al. Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity. J. Am. Ceram. Soc. 101, 1677–1683 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zhang, M. et al. Conductive and elastic TiO2 nanofibrous aerogels: a new concept toward self‐supported electrocatalysts with superior activity and durability. Angew. Chem. Int. Ed. 59, 23252–23260 (2020).

    CAS 
    Article 

    Google Scholar 

  • Schiøtz, J. & Jacobsen, K. W. A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Schuh, C. A. & Lund, A. C. Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449–452 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yu, X., Zhou, J., Liang, H., Jiang, Z. & Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog. Mater Sci. 94, 114–173 (2018).

    Article 

    Google Scholar 

  • Bhardwaj, N. & Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Li, L. et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 40, 329–336 (2021).

    Article 

    Google Scholar 

  • Su, L. et al. Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 12, 3103–3111 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dou, L. et al. Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation. J. Mater. Chem. A 8, 7775–7783 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zong, D. et al. Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption. Nat. Commun. 12, 6599 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yin, J., Li, X., Zhou, J. & Guo, W. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 13, 3232–3236 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lin, Z. & Wei, Y. A strain gradient linear viscoelasticity theory. Int. J. Solids Struct. 203, 197–209 (2020).

    Article 

    Google Scholar 

  • Ma, H., Wei, Y., Song, J. & Liang, L. Mechanical behavior and size effect of the staggered bio-structure materials. Mech. Mater. 126, 47–56 (2018).

    Article 

    Google Scholar 

  • Kashani, H., Ito, Y., Han, J., Liu, P. & Chen, M. Extraordinary tensile strength and ductility of scalable nanoporous graphene. Sci. Adv. 5, eaat6951 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, M. Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445–469 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, X., Pan, D., Hong, Y. & Guo, W. Bending Poisson effect in two-dimensional crystals. Phys. Rev. Lett. 112, 205502 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Lu, X. et al. Thermal conductivity of monolithic organic aerogels. Science 255, 971–972 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, H. Y. et al. Fabrication of high‐strength continuous zirconia fibers and their formation mechanism study. J. Am. Ceram. Soc. 87, 2237–2241 (2004).

    CAS 
    Article 

    Google Scholar 

  • Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952).

    ADS 
    Article 

    Google Scholar 

  • Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss. 104, 93–110 (1996).

    ADS 
    Article 

    Google Scholar 

  • Ronneberger, I., Zhang, W., Eshet, H. & Mazzarello, R. Crystallization properties of the Ge2Sb2Te5 phase-change compound from advanced simulations. Adv. Funct. Mater. 25, 6407–6413 (2015).

    CAS 
    Article 

    Google Scholar 

  • Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    ADS 
    Article 

    Google Scholar 

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lu, X., Deng, L. & Du, J. Effect of ZrO2 on the structure and properties of soda-lime silicate glasses from molecular dynamics simulations. J. Non Cryst. Solids 491, 141–150 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: new feathers for an old bird. Comput. Phys. Commun. 185, 604–613 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Piaggi, P. M. & Parrinello, M. Entropy based fingerprint for local crystalline order. J. Chem. Phys. 147, 114112 (2017).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Niu, H., Piaggi, P. M., Invernizzi, M. & Parrinello, M. Molecular dynamics simulations of liquid silica crystallization. Proc. Natl Acad. Sci. USA 115, 5348–5352 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article 
    CAS 

    Google Scholar 

  • Van Duin, A. C. T. et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107, 3803–3811 (2003).

    Article 
    CAS 

    Google Scholar 

  • Dwivedi, S. et al. Atomistic mechanisms of thermal transformation in a Zr-metal organic framework, MIL-140C. J. Phys. Chem. Lett. 12, 177–184 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Newsome, D. A., Sengupta, D., Foroutan, H., Russo, M. F. & van Duin, A. C. T. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, part I. J. Phys. Chem. C 116, 16111–16121 (2012).

    CAS 
    Article 

    Google Scholar 

  • Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (OUP, 2017).

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *