Strange India All Strange Things About India and world


  • 1.

    Li, Q. & Liberles, S. D. Aversion and attraction through olfaction. Curr. Biol. 25, R120–R129 (2015).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Sternson, S. M. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77, 810–824 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Rolls, E. T. Taste, olfactory, and food reward value processing in the brain. Prog. Neurobiol. 127-128, 64–90 (2015).

    Article 

    Google Scholar 

  • 5.

    Tong, J. et al. Ghrelin enhances olfactory sensitivity and exploratory sniffing in rodents and humans. J. Neurosci. 31, 5841–5846 (2011).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Negroni, J. et al. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats. PLoS ONE 7, e45266 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Soria-Gómez, E. et al. The endocannabinoid system controls food intake via olfactory processes. Nat. Neurosci. 17, 407–415 (2014).

    Article 

    Google Scholar 

  • 8.

    Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Li, Q. et al. Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr. Biol. 23, 11–20 (2013).

    Article 

    Google Scholar 

  • 10.

    Burnett, C. J. et al. Need-based prioritization of behavior. eLife 8, e44527 (2019).

    Article 

    Google Scholar 

  • 11.

    Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e15 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Essner, R. A. et al. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J. Neurosci. 37, 8678–8687 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Small, D. M., Veldhuizen, M. G., Felsted, J., Mak, Y. E. & McGlone, F. Separable substrates for anticipatory and consummatory food chemosensation. Neuron 57, 786–797 (2008).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Rousseaux, M., Muller, P., Gahide, I., Mottin, Y. & Romon, M. Disorders of smell, taste, and food intake in a patient with a dorsomedial thalamic infarct. Stroke 27, 2328–2330 (1996).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Chen, Y., Lin, Y. C., Kuo, T. W. & Knight, Z. A. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160, 829–841 (2015).

    Article 

    Google Scholar 

  • 22.

    Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 18, 588–595 (2013).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Chen, Y. et al. Sustained NPY signaling enables AgRP neurons to drive feeding. eLife 8, e46348 (2019).

    Article 

    Google Scholar 

  • 24.

    Krashes, M. J. et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139, 416–427 (2009).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Kay, L. M. & Sherman, S. M. An argument for an olfactory thalamus. Trends Neurosci. 30, 47–53 (2007).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Tham, W. W., Stevenson, R. J. & Miller, L. A. The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res. Rev. 62, 109–126 (2009).

    Article 

    Google Scholar 

  • 27.

    Otis, J. M. et al. Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron 103, 423–431 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Zhu, Y. et al. Dynamic salience processing in paraventricular thalamus gates associative learning. Science 362, 423–429 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Livneh, Y. et al. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 546, 611–616 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Kirouac, G. J. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci. Biobehav. Rev. 56, 315–329 (2015).

    Article 

    Google Scholar 

  • 31.

    Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn (Academic Press, 2008).

  • 32.

    Ben-Shaul, Y. OptiMouse: a comprehensive open source program for reliable detection and analysis of mouse body and nose positions. BMC Biol. 15, 41 (2017).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *