Strange IndiaStrange India


  • Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308, 193–199 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Porcelli, D. & Halliday, A. N. The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vogt, M., Trieloff, M., Ott, U., Hopp, J. & Schwarz, W. H. Solar noble gases in an iron meteorite indicate terrestrial mantle signatures derive from Earth’s core. Commun. Earth Environ. 2, 92 (2021).

    Article 
    ADS 

    Google Scholar 

  • Roth, A. S. et al. The primordial He budget of the Earth set by percolative core formation in planetesimals. Geochem. Perspect. Lett. 9, 26–31 (2019).

    Article 

    Google Scholar 

  • Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W–He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, J. & Du, Z. Primordial helium extracted from the Earth’s core through magnesium oxide exsolution. Nat. Geosci. 16, 541–545 (2023).

  • Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • White, W. M. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem. Geol. 419, 10–28 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jones, T. D., Sime, N. & van Keken, P. E. Burying Earth’s primitive mantle in the slab graveyard. Geochem. Geophys. Geosyst. 22, e2020GC009396 (2021).

    Article 
    ADS 

    Google Scholar 

  • Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Horton, F. et al. Primordial neon in high-3He/4He Baffin Island olivines. Earth Planet. Sci. Lett. 558, 116762 (2021).

    Article 
    CAS 

    Google Scholar 

  • Biasi, J., Asimow, P. D., Horton, F. & Boyes, X. M. Eruption rates, tempo, and stratigraphy of Paleocene flood basalts on Baffin Island, Canada. Geochem. Geophys. Geosyst. 23, e221GC010172 (2022).

  • Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Willhite, L. N. et al. Hot and heterogenous high-3He/4He components: new constraints from proto-iceland plume lavas from Baffin Island. Geochem. Geophys. Geosyst. 20, 5939–5967 (2019).

  • Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kent, A. J. R. et al. Mantle heterogeneity during the formation of the North Atlantic igneous province: constraints from trace element and Sr–Nd–Os–O isotope systematics of Baffin Island picrites. Geochem. Geophys. Geosyst. 5, Q11004 (2004).

  • Jones, T. D., Davies, D. R. & Sossi, P. A. Tungsten isotopes in mantle plumes: heads it’s positive, tails it’s negative. Earth Planet. Sci. Lett. 506, 255–267 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Porcelli, D. & Ballentine, C. J. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47, 411–480 (2002).

    Article 
    CAS 

    Google Scholar 

  • Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Halliday, A. N. & Canup, R. M. The accretion of planet Earth. Nat. Rev. Earth Environ. 4, 19–35 (2022).

  • Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Weiss, B. P., Bai, X.-N. & Fu, R. R. History of the solar nebula from meteorite paleomagnetism. Sci. Adv. https://doi.org/10.1126/sciadv.aba5967 (2021).

  • Olson, P. L. & Sharp, Z. D. Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019).

    Article 
    CAS 

    Google Scholar 

  • Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, K., Lu, X., Liu, X., Zhou, M. & Yin, K. Partitioning of noble gases (He, Ne, Ar, Kr, Xe) during Earth’s core segregation: a possible core reservoir for primordial noble gases. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2022.01.009 (2022).

  • Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proc. Natl Acad. Sci. USA 117, 14738–14744 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. 142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).

    Article 
    ADS 

    Google Scholar 

  • Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, L. & Steinle-Neumann, G. The helium elemental and isotopic compositions of the Earth’s core based on ab initio simulations. J. Geophys. Res. Solid Earth 126, e2021JB023106 (2021).

  • Li, Y., Vočadlo, L., Ballentine, C. & Brodholt, J. P. Primitive noble gases sampled from ocean island basalts cannot be from the Earth’s core. Nat. Commun. 13, 3770 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Perspect. Lett. 15, 15–18 (2020).

  • Heber, V. S. et al. Isotopic mass fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis mission. Astrophys. J. 759, 121 (2012).

    Article 
    ADS 

    Google Scholar 

  • Faure, P. et al. Uranium and thorium partitioning in the bulk silicate Earth and the oxygen content of Earth’s core. Geochim. Cosmochim. Acta 275, 83–98 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and 3He/4He signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ranta, E. et al. Ancient and recycled sulfur sampled by the Iceland mantle plume. Earth Planet. Sci. Lett. 584, 117452 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hoffman, N. R. A. & McKenzie, D. P. The destruction of geochemical heterogeneities by differential fluid motions during mantle convection. Geophys. J. Int. 82, 163–206 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hart, S. R., Kurz, M. D. & Wang, Z. Scale length of mantle heterogeneities: constraints from helium diffusion. Earth Planet. Sci. Lett. 269, 508–517 (2008).

    Article 
    ADS 

    Google Scholar 

  • Wang, K., Brodholt, J. & Lu, X. Helium diffusion in olivine based on first principles calculations. Geochim. Cosmochim. Acta 156, 145–153 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cherniak, D. J., Thomas, J. B. & Watson, E. B. Neon diffusion in olivine and quartz. Chem. Geol. 371, 68–82 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature 420, 304–307 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moreira, M. A. & Kurz, M. D. In The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry (ed. Burnard, P.) 371–391 (Springer, 2013).

  • McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kurz, M. D. et al. Correlated helium, neon, and melt production on the super-fast spreading East Pacific Rise near 17°S. Earth Planet. Sci. Lett. 232, 125–142 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Patterson, D. B., Farley, K. A. & McInnes, B. I. A. Helium isotopic composition of the Tabar–Lihir–Tanga–Feni island arc, Papua New Guinea. Geochim. Cosmochim. Acta 61, 2485–2496 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Scarsi, P. Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio. Geochim. Cosmochim. Acta 64, 3751–3762 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abouchami, W., Galer, S. J. G. & Koschinsky, A. Pb and Nd isotopes in NE Atlantic Fe–Mn crusts: proxies for trace metal paleosources and paleocean circulation. Geochim. Cosmochim. Acta 63, 1489–1505 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Todt, W., Cliff, R. A., Hanser, A. & Hofmann, A. W. In Earth Processes: Reading the Isotopic Code (eds. Basu, A. & Hart, S.) 429-437 (American Geophysical Union, 1996).

  • Dickin, A. P. Radiogenic Isotope Geology (Cambridge Univ. Press, 2018).

  • Maltese, A. & Mezger, K. The Pb isotope evolution of bulk silicate Earth: constraints from its accretion and early differentiation history. Geochim. Cosmochim. Acta 271, 179–193 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Horton, F., Farley, K. & Jackson, M. Helium distributions in ocean island basalt olivines revealed by X-ray computed tomography and single-grain crushing experiments. Geochim. Cosmochim. Acta 244, 467–477 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yatsevich, I. & Honda, M. Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res. Solid Earth 102, 10291–10298 (1997).

    Article 
    CAS 

    Google Scholar 

  • McDonough, W. F. Compositional model for the Earth’s core. Treatise Geochem. 2, 547–568 (2003).

    Article 
    ADS 

    Google Scholar 

  • Leya, I. & Wieler, R. Nucleogenic production of Ne isotopes in Earth’s crust and upper mantle induced by alpha particles from the decay of U and Th. J. Geophys. Res. Solid Earth 104, 15439–15450 (1999).

    Article 
    CAS 

    Google Scholar 

  • Cox, S. E., Farley, K. A. & Cherniak, D. J. Direct measurement of neon production rates by (α, n) reactions in minerals. Geochim. Cosmochim. Acta 148, 130–144 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *