Strange IndiaStrange India


  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dai, Y. et al. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article 
    CAS 

    Google Scholar 

  • Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, J. et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 1, 191–196 (2018).

    Article 
    CAS 

    Google Scholar 

  • Münzenrieder, N. et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett. 35, 69–71 (2014).

    Article 
    ADS 

    Google Scholar 

  • Pecora, A. et al. Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid-State Electron. 52, 348–352 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Won, P. et al. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19, 6087–6096 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article 

    Google Scholar 

  • Sim, K. et al. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 5, eaav9653 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, J. I. et al. Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl. Mater. Interfaces 8, 14037–14045 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article 
    CAS 

    Google Scholar 

  • Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing—process and its applications. Adv. Mater. 22, 673–685 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borchert, J. W. et al. Flexible low-voltage high-frequency organic thin-film transistors. Sci. Adv. 6, eaaz5156 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shirriff, K. The surprising story of the first microprocessors. IEEE Spectr. 53, 48–54 (2016).

    Article 

    Google Scholar 

  • Kim, M., Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsuno, R. et al. Relationship between the Relative Dielectric Constant and the Monomer Sequence of Acrylonitrile in Rubber. ACS Omega 5, 16255–16262 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoyle, C. E. et al. Thiol–enes: chemistry of the past with promise for the future. J. Polym. Sci. A Polym. Chem. 42, 5301–5338 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cardenas, J. A., Andrews, J. B., Noyce, S. G. & Franklin, A. D. Carbon nanotube electronics for IoT sensors. Nano Futures 4, 012001 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lei, T. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10, 2161 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuhrer, M. S. et al. Crossed nanotube junctions. Science 288, 494–497 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article 

    Google Scholar 

  • Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, T. C. et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans. Electron Dev. 58, 141–150 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oh, H. et al. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci. Adv. 6, eabd7795 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, J. et al. Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 20, 66–74 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Z. et al. Large-scale integrated flexible tactile sensor array for sensitive smart robotic touch. ACS Nano 16, 16784–16795 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, M. et al. Si membrane based tactile sensor with active matrix circuitry for artificial skin applications. Appl. Phys. Lett. 106, 043502 (2015).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *