Strange IndiaStrange India


  • Herzog, D., Seyda, V., Wycisk, E. & Emmelmann, C. Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016).

    ADS 
    CAS 

    Google Scholar 

  • DebRoy, T. et al. Additive manufacturing of metallic components – process, structure and properties. Prog. Mater Sci. 92, 112–224 (2018).

    CAS 

    Google Scholar 

  • Sanaei, N. & Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater Sci. 117, 100724 (2021).

    CAS 

    Google Scholar 

  • Becker, T. H., Kumar, P. & Ramamurty, U. Fracture and fatigue in additively manufactured metals. Acta Mater. 219, 117240 (2021).

    CAS 

    Google Scholar 

  • Donachie, M. J. Titanium: A Technical Guide 2nd edn (ASM International, 2000).

  • Greitemeier, D., Palm, F., Syassen, F. & Melz, T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 94, 211–217 (2017).

    CAS 

    Google Scholar 

  • Su, C., Yu, H., Wang, Z., Yang, J. & Zeng, X. Controlling the tensile and fatigue properties of selective laser melted Ti–6Al–4 V alloy by post treatment. J. Alloys Compd. 857, 157552 (2021).

    CAS 

    Google Scholar 

  • Bustillos, J., Kim, J. & Moridi, A. Exploiting lack of fusion defects for microstructural engineering in additive manufacturing. Addit. Manuf. 48, 102399 (2021).

    CAS 

    Google Scholar 

  • Shui, X. et al. Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Mater. Sci. Eng. A Struct. Mater. 680, 239–248 (2017).

    CAS 

    Google Scholar 

  • Kasperovich, G. & Hausmann, J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 220, 202–214 (2015).

    CAS 

    Google Scholar 

  • Pegues, J. W. et al. Fatigue of additive manufactured Ti-6Al-4V, Part I: the effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. Int. J. Fatigue 132, 105358 (2020).

  • Liu, R., Zhang, P., Zhang, Z. J., Wang, B. & Zhang, Z. F. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction. J. Mater. Sci. Technol. 70, 233–249 (2021).

    Google Scholar 

  • Qu, Z. et al. Coupling effects of microstructure and defects on the fatigue properties of laser powder bed fusion Ti-6Al-4V. Addit. Manuf. 61, 103355 (2023).

    CAS 

    Google Scholar 

  • Zhang, Z. J., Zhang, P., Li, L. L. & Zhang, Z. F. Fatigue cracking at twin boundaries: effects of crystallographic orientation and stacking fault energy. Acta Mater. 60, 3113–3127 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, Z. F. & Wang, Z. G. Grain boundary effects on cyclic deformation and fatigue damage. Prog. Mater Sci. 53, 1025–1099 (2008).

    Google Scholar 

  • Li, P., Li, S. X., Wang, Z. G. & Zhang, Z. F. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals. Prog. Mater Sci. 56, 328–377 (2011).

    CAS 

    Google Scholar 

  • Li, L. L., Zhang, Z. J., Zhang, P. & Zhang, Z. F. A review on the fatigue cracking of twin boundaries: crystallographic orientation and stacking fault energy. Prog. Mater Sci. 131, 101011 (2023).

    CAS 

    Google Scholar 

  • Ding, Q. Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, C. et al. Multi-dimensional study of the effect of early slip activity on fatigue crack initiation in a near-α titanium alloy. Acta Mater. 233, 117967 (2022).

    CAS 

    Google Scholar 

  • Bantounas, I., Dye, D. & Lindley, T. C. The role of microtexture on the faceted fracture morphology in Ti–6Al–4 V subjected to high-cycle fatigue. Acta Mater. 58, 3908–3918 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Bridier, F., Villechaise, P. & Mendez, J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater. 56, 3951–3962 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Neal, D. & Blenkinsop, P. Internal fatigue origins in α-β titanium alloys. Acta Metall. 24, 59–63 (1976).

    CAS 

    Google Scholar 

  • Russell, W. & Simon, B. Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys (Springer, 2012).

  • Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A Struct. Mater. 243, 32–45 (1998).

    Google Scholar 

  • Lu, S. L. et al. Optimal tensile properties of laser powder bed fusion hereditary basket-weave microstructure in additive manufactured Ti6Al4V. Addit. Manuf. 59, 103092 (2022).

    CAS 

    Google Scholar 

  • Wang, H. et al. Formation of a transition V-rich structure during the α‘ to α + β phase transformation process in additively manufactured Ti-6Al-4 V. Acta Mater. 235, 118104 (2022).

  • Kumar, P., Prakash, O. & Ramamurty, U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Mater. 154, 246–260 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Xue, A. et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition. Scr. Mater. 205, 114180 (2021).

  • Chen, J. et al. Deciphering the transformation pathway in laser powder-bed fusion additive manufacturing of Ti-6Al-4V alloy. Addit. Manuf. 58, 103041 (2022).

    CAS 

    Google Scholar 

  • Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Song, T. et al. Strong and ductile titanium–oxygen–iron alloys by additive manufacturing. Nature 618, 63–68 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alegre, J. M., Díaz, A., García, R., Peral, L. B. & Cuesta, I. I. Effect of HIP post-processing at 850 °C/200 MPa in the fatigue behavior of Ti-6Al-4V alloy fabricated by Selective Laser Melting. Int. J. Fatigue 163, 107097 (2022).

    CAS 

    Google Scholar 

  • Yu, H., Li, F., Wang, Z. & Zeng, X. Fatigue performances of selective laser melted Ti-6Al-4V alloy: influence of surface finishing, hot isostatic pressing and heat treatments. Int. J. Fatigue 120, 175–183 (2019).

    CAS 

    Google Scholar 

  • Li, P. et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V. Int. J. Fatigue 120, 342–352 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Ahmed, T. & Rack, H. J. Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A Struct. Mater. 243, 206–211 (1998).

    Google Scholar 

  • Tammas-Williams, S., Withers, P. J., Todd, I. & Prangnell, P. B. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 122, 72–76 (2016).

    CAS 

    Google Scholar 

  • Semiatin, S. L., Soper, J. C. & Sukonnik, I. M. Short-time beta grain growth kinetics for a conventional titanium alloy. Acta Mater. 44, 1979–1986 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Fan, H., Wang, C., Tian, Y., Zhou, K. & Yang, S. Laser powder bed fusion (L-PBF) of Ti–6Al–4 V/Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4 V/γ-TiAl bimetals: processability, interface and mechanical properties. Mater. Sci. Eng. A Struct. Mater. 871, 144907 (2023).

  • Zhu, Y. M. et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nat. Mater. 21, 1258–1262 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zarkades, A. & Larson, F. R. The Science, Technology and Application of Titanium (Pergamon, 1970).

  • Wu, G. Q., Shi, C. L., Sha, W., Sha, A. X. & Jiang, H. R. Effect of microstructure on the fatigue properties of Ti–6Al–4 V titanium alloys. Mater. Des. 46, 668–674 (2013).

    CAS 

    Google Scholar 

  • Wang, S. et al. Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater. Today 59, 133–160 (2022).

    Google Scholar 

  • Stinville, J. C. et al. On the origins of fatigue strength in crystalline metallic materials. Science 377, 1065–1071 (2022).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. L., Zhang, Z. J., Zhang, P., Wang, Z. G. & Zhang, Z. F. Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary. Nat. Commun. 5, 3536 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dan, C. et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 22, 1182–1188 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. M. et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17, 63–71 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *