Strange India All Strange Things About India and world


  • Theis, T. N. & Wong, H. P. The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng. 19, 41–50 (2017).

    Article 

    Google Scholar 

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wong, H. & Iwai, H. On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology. Microelectron. Eng. 138, 57–76 (2015).

    CAS 
    Article 

    Google Scholar 

  • Badaroglu, M. et al. More Moore. In International Roadmap for Devices and Systems 2020 12 (IEEE, 2020); https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf

  • Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D materials. Chem. Mater. 29, 3809–3826 (2017).

    CAS 
    Article 

    Google Scholar 

  • Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Park, J. H. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 10, 6888–6896 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vu, Q. A. et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 5, 031001 (2018).

    Article 
    CAS 

    Google Scholar 

  • Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    CAS 
    Article 

    Google Scholar 

  • Neville, R. C., Hoeneisen, B. & Mead, C. A. Permittivity of strontium titanate. J. Appl. Phys. 43, 2124–2131 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Reiner, J. W. et al. Crystalline oxides on silicon. Adv. Mater. 22, 2919–2938 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Couto, N. J. G., Sacépé, B. & Morpurgo, A. F. Transport through graphene on SrTiO3. Phys. Rev. Lett. 107, 225501 (2011).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO3. Science 367, 781–786 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y. & Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).

    Article 
    CAS 

    Google Scholar 

  • McPherson, J., Kim, J., Shanware, A., Mogul, H. & Rodriguez, J. Proposed universal relationship between dielectric breakdown and dielectric constant. In 2002 IEEE International Electron Devices Meeting (IEDM) 633–636 (IEEE, 2002).

  • Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Wen, C. et al. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 32, 2002525 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sokolov, N. S. et al. Low-leakage MIS structures with 1.5-6 nm CaF2 insulating layer on Si(111). Microelectron. Eng. 84, 2247–2250 (2007).

    CAS 
    Article 

    Google Scholar 

  • Hattori, Y., Taniguchi, T., Watanabe, K. & Nagashio, K. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baumert, B. A. et al. Characterization of sputtered barium strontium titanate and strontium titanate-thin films. J. Appl. Phys. 82, 2558–2566 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Smets, Q. et al. Sources of variability in scaled MoS2 FETs. In 2020 IEEE International Electron Devices Meeting (IEDM) 3.1.1–3.1.4 (IEEE, 2020).

  • Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yu, L. et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In 2015 IEEE International Electron Devices Meeting (IEDM) 32.3.1–32.3.4 (IEEE, 2015).

  • Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42nm contact pitch and 250µA/µm drain current. In 2019 IEEE International Electron Devices Meeting (IEDM) 23.2.1–23.2.4 (IEEE, 2019).

  • Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qian, Q. et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer. Sci Rep. 6, 27676 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ashokbhai Patel, K., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2019).

    Article 
    CAS 

    Google Scholar 

  • English, C. D., Smithe, K. K. H., Xu, R. L. & Pop, E. Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates. In 2016 IEEE International Electron Devices Meeting (IEDM) 5.6.1–5.6.4 (IEEE, 2016).

  • Xu, K. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nourbakhsh, A. et al. 15-nm channel length MoS2 FETs with single- and double-gate structures. In 2015 Symposium on VLSI Technology (VLSI Technology) T28–T29 (IEEE, 2015).

  • Knobloch, T. et al. A physical model for the hysteresis in MoS2 transistors. IEEE J. Electron Device. Soc. 6, 972–978 (2018).

    CAS 
    Article 

    Google Scholar 

  • Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Surface defects and the electronic structure of SrTiO3 surfaces. Phys. Rev. B 17, 4908–4921 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • van Benthem, K., Elsässer, C. & French, R. H. Bulk electronic structure of SrTiO3: experiment and theory. J. Appl. Phys. 90, 6156–6164 (2001).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Wunderlich, W., Ohta, H. & Koumoto, K. Enhanced effective mass in doped SrTiO3 and related perovskites. Physica B 404, 2202–2212 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Vasquez, R. P. SrTiO3 by XPS. Surf. Sci. Spectra 1, 129–135 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shi, Y. et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci Rep. 3, 1839 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lewis, J. Material challenge for flexible organic devices. Mater. Today 9, 38–45 (2006).

    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.