Strange IndiaStrange India


  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Betti, A., Fiori, G. & Iannaccone, G. Drift velocity peak and negative differential mobility in high field transport in graphene nanoribbons explained by numerical simulations. Appl. Phys. Lett. 99, 242108 (2011).

    Article 

    Google Scholar 

  • Geng, Z. et al. Graphene nanoribbons for electronic devices. Ann. Phys. 529, 1700033 (2017).

    Article 

    Google Scholar 

  • Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. S. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater. 20, 202–207 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Chen, C. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 4, 653–663 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, H. et al. Photoluminescent semiconducting graphene nanoribbons via longitudinally unzipping single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 13, 52892–52900 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, G. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 109, 053101 (2016).

    Article 

    Google Scholar 

  • Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotechnol. 6, 563–567 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, M.-W. et al. Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons. Phys. Rev. B 84, 125411 (2011).

    Article 

    Google Scholar 

  • Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016).

    Article 

    Google Scholar 

  • Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pham, P. V. Cleaning of graphene surfaces by low-pressure air plasma. R. Soc. Open Sci. 5, 172395 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y., Herlinger, P., Taniguchi, T., Watanabe, K. & Smet, J. H. Reliable postprocessing improvement of van der Waals heterostructures. ACS Nano 13, 14182–14190 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lyu, B. et al. Catalytic growth of ultralong graphene nanoribbons on insulating substrates. Adv. Mater. 34, 2200956 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mandelli, D., Ouyang, W., Urbakh, M. & Hod, O. The princess and the nanoscale pea: long-range penetration of surface distortions into layered materials stacks. ACS Nano 13, 7603–7609 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Way, A. J. et al. Graphene nanoribbons initiated from molecularly derived seeds. Nat. Commun. 13, 2992 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreno, C. et al. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 54, 9402–9405 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727–731 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Penumatcha, A. V., Salazar, R. B. & Appenzeller, J. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model. Nat. Commun. 6, 8948 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article 

    Google Scholar 

  • Zhang, Q., Fang, T., Xing, H., Seabaugh, A. & Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett. 29, 1344–1346 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zhao, P., Chauhan, J. & Guo, J. Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9, 684–688 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rahman, A., Jing, G., Datta, S. & Lundstrom, M. S. Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003).

    Article 
    CAS 

    Google Scholar 

  • Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laroche, D., Gervais, G., Lilly, M. P. & Reno, J. L. 1D-1D Coulomb drag signature of a Luttinger liquid. Science 343, 631–634 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, S. et al. Tunneling spectroscopy in carbon nanotube-hexagonal boron nitride-carbon nanotube heterojunctions. Nano Lett. 20, 6712–6718 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B 48, 13115–13118 (1993).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar 

  • Wu, P. et al. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 114, 216102 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    MathSciNet 

    Google Scholar 

  • Ouyang, W., Mandelli, D., Urbakh, M. & Hod, O. Nanoserpents: graphene nanoribbon motion on two-dimensional hexagonal materials. Nano Lett. 18, 6009–6016 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brenner, D. W. et al. A second-generation reactive empirical bondorder (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    Article 
    CAS 

    Google Scholar 

  • Kınacı, A., Haskins, J. B., Sevik, C. & Çağın, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012).

    Article 

    Google Scholar 

  • Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theory Comput. 12, 2896–2905 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ouyang, W. et al. Mechanical and tribological properties of layered materials under high pressure: assessing the importance of many-body dispersion effects. J. Chem. Theory Comput. 16, 666–676 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    CAS 

    Google Scholar 

  • Bitzek, E., Koskinen, P., Gahler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Shylau, A. A., Kłos, J. W. & Zozoulenko, I. V. Capacitance of graphene nanoribbons. Phys. Rev. B 80, 205402 (2009).

    Article 

    Google Scholar 

  • Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 293–373 (Wiley, 2006).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *