Vernet, N. et al. The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility. Development 141, 855–866 (2014).
Google Scholar
Amleh, A., Ledee, N., Saeed, J. & Taketo, T. Competence of oocytes from the B6.YDOM sex-reversed female mouse for maturation, fertilization, and embryonic development in vitro. Dev. Biol. 178, 263–275 (1996).
Google Scholar
Mahadevaiah, S. K., Lovell-Badge, R. & Burgoyne, P. S. Tdy-negative XY, XXY and XYY female mice: breeding data and synaptonemal complex analysis. J. Reprod. Fertil. 97, 151–160 (1993).
Google Scholar
Taketo-Hosotani, T., Nishioka, Y., Nagamine, C. M., Villalpando, I. & Merchant-Larios, H. Development and fertility of ovaries in the B6.YDOM sex-reversed female mouse. Development 107, 95–105 (1989).
Google Scholar
Lavery, R. et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev. Biol. 354, 111–122 (2011).
Google Scholar
Saitou, M. & Yamaji, M. Primordial germ cells in mice. Cold Spring Harb. Perspect. Biol. 4, a008375 (2012).
Google Scholar
Adams, I. R. & McLaren, A. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155–1164 (2002).
Google Scholar
Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).
Google Scholar
Taketo, T. The role of sex chromosomes in mammalian germ cell differentiation: can the germ cells carrying X and Y chromosomes differentiate into fertile oocytes? Asian J. Androl. 17, 360–366 (2015).
Google Scholar
Taketo, T. & Naumova, A. K. Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse. Chromosoma 122, 337–349 (2013).
Google Scholar
Alton, M., Lau, M. P., Villemure, M. & Taketo, T. The behavior of the X- and Y-chromosomes in the oocyte during meiotic prophase in the B6.Y(TIR)sex-reversed mouse ovary. Reproduction 135, 241–252 (2008).
Google Scholar
Hikabe, O. et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539, 299–303 (2016).
Google Scholar
Hamada, N. et al. Germ cell-intrinsic effects of sex chromosomes on early oocyte differentiation in mice. PLoS Genet. 16, e1008676 (2020).
Google Scholar
Yamamoto, S. et al. Rapid selection of XO embryonic stem cells using Y chromosome-linked GFP transgenic mice. Transgenic Res. 23, 757–765 (2014).
Google Scholar
Deng, J. M. et al. Generation of viable male and female mice from two fathers. Biol. Reprod. 84, 613–618 (2011).
Google Scholar
Eggan, K. et al. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat. Biotechnol. 20, 455–459 (2002).
Google Scholar
Rudd, M. K. et al. Monosomy X rescue explains discordant NIPT results and leads to uniparental isodisomy. Prenat. Diagn. 38, 920–923 (2018).
Google Scholar
Luo, Y. et al. Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells. Cell Discov. 1, 15022 (2015).
Google Scholar
Denes, A. M., Landin-Wilhelmsen, K., Wettergren, Y., Bryman, I. & Hanson, C. The proportion of diploid 46,XX cells increases with time in women with Turner syndrome-a 10-year follow-up study. Genet. Test. Mol. Biomarkers 19, 82–87 (2015).
Google Scholar
Bolton, H. et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 7, 11165 (2016).
Google Scholar
Nakai-Futatsugi, Y. & Niwa, H. Zscan4 is activated after telomere shortening in mouse embryonic stem cells. Stem Cell Rep. 6, 483–495 (2016).
Google Scholar
Hayashi, K. et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971–975 (2012).
Google Scholar
Codner, G. F. et al. Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biol. 17, 30 (2016).
Google Scholar
Gaztelumendi, N. & Nogues, C. Chromosome instability in mouse embryonic stem cells. Sci Rep. 4, 5324 (2014).
Google Scholar
Roper, R. J., St John, H. K., Philip, J., Lawler, A. & Reeves, R. H. Perinatal loss of Ts65Dn Down syndrome mice. Genetics 172, 437–443 (2006).
Google Scholar
Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011).
Google Scholar
Severance, A. L., Midic, U. & Latham, K. E. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol. Genomics 52, 96–109 (2020).
Google Scholar
Xie, B. et al. Poly(ADP-ribose) mediates asymmetric division of mouse oocyte. Cell Res. 28, 462–475 (2018).
Google Scholar
Zuo, E. et al. CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biol. 18, 224 (2017).
Google Scholar
Choi, J. et al. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature 548, 219–223 (2017).
Google Scholar
Zhang, M. et al. Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO J. 35, 2285–2300 (2016).
Google Scholar
Hirota, T. et al. Fertile offspring from sterile sex chromosome trisomic mice. Science 357, 932–935 (2017).
Google Scholar
Liu, P. et al. Passage number is a major contributor to genomic structural variations in mouse iPSCs. Stem Cells 32, 2657–2667 (2014).
Google Scholar
Young, M. A. et al. Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10, 570–582 (2012).
Google Scholar
Liang, Q., Conte, N., Skarnes, W. C. & Bradley, A. Extensive genomic copy number variation in embryonic stem cells. Proc. Natl Acad. Sci. USA 105, 17453–17456 (2008).
Google Scholar
Li, Z. K. et al. Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions. Cell Stem Cell 23, 665–676.e664 (2018).
Google Scholar
Vaz, B., El Mansouri, F., Liu, X. & Taketo, T. Premature ovarian insufficiency in the XO female mouse on the C57BL/6J genetic background. Mol. Hum. Reprod. 26, 678–688 (2020).
Google Scholar
Ishikura, Y. et al. In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells. Cell Rep. 17, 2789–2804 (2016).
Google Scholar
Ohta, H. et al. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J. 36, 1888–1907 (2017).
Google Scholar
Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
Google Scholar
Hayashi, K. & Saitou, M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat. Protoc. 8, 1513–1524 (2013).
Google Scholar
D’Hulst, C., Parvanova, I., Tomoiaga, D., Sapar, M. L. & Feinstein, P. Fast quantitative real-time PCR-based screening for common chromosomal aneuploidies in mouse embryonic stem cells. Stem Cell Rep. 1, 350–359 (2013).
Google Scholar
Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Google Scholar
Hayashi, K., Hikabe, O., Obata, Y. & Hirao, Y. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat. Protoc. 12, 1733–1744 (2017).
Google Scholar
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
Google Scholar
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Sasaki, K. et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194 (2015).
Google Scholar