Strange IndiaStrange India


  • Ballif, C., Haug, F.-J., Boccard, M., Verlinden, P. J. & Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597–616 (2022).

    Article 
    ADS 

    Google Scholar 

  • Razzaq, A., Allen, T. G., Liu, W., Liu, Z. & De Wolf, S. Silicon heterojunction solar cells: techno-economic assessment and opportunities. Joule 6, 514–542 (2022).

    Article 
    CAS 

    Google Scholar 

  • Saga, T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96–102 (2010).

    Article 

    Google Scholar 

  • Solar PV. IEA https://www.iea.org/reports/solar-pv (2022).

  • Liu, R., Wang, Z. L., Fukuda, K. & Someya, T. Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022).

    Article 
    ADS 

    Google Scholar 

  • Massiot, I., Cattoni, A. & Collin, S. Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959–972 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tohoda, S. et al. Future directions for higher-efficiency HIT solar cells using a thin silicon wafer. J. Non-Cryst. Solids 358, 2219–2222 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sai, H., Umishio, H. & Matsui, T. Very thin (56 μm) silicon heterojunction solar cells with an efficiency of 23.3% and an open-circuit voltage of 754 mV. Sol. RRL 5, 2100634 (2021).

    Article 
    CAS 

    Google Scholar 

  • Herasimenka, S. Y., Dauksher, W. J. & Bowden, S. G. >750 mV open circuit voltage measured on 50 μm thick silicon heterojunction solar cell. Appl. Phys. Lett. 103, 053511 (2013).

    Article 
    ADS 

    Google Scholar 

  • Sai, H. et al. Potential of very thin and high-efficiency silicon heterojunction solar cells. Prog. Photovolt. 27, 1061–1070 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, W. et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617, 717–723 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article 

    Google Scholar 

  • Himalaya HJT solar cell. Anhui Huasun Energy Co. https://www.huasunsolar.com/products/hjt-solar-cell/ (2022).

  • Richter, A. et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat. Energy 6, 429–438 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Qu, X. et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy 6, 194–202 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • You, J. et al. Hydrogen-rich c-Si interfacial modification to obtain efficient passivation for silicon heterojunction solar cell. J. Mater. Sci. 31, 14608–14613 (2020).

    CAS 

    Google Scholar 

  • Wang, J. et al. Performance of heterojunction solar cells with different intrinsic a-Si:H thin layers deposited by RF- and VHF-PECVD. J. Mater. Sci. 32, 25327–25331 (2021).

    CAS 

    Google Scholar 

  • Ru, X. et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Sol. Energy Mater. Sol. Cells 215, 110643 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fujiwara, H., Kaneko, T. & Kondo, M. Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells. Appl. Phys. Lett. 91, 133508 (2007).

    Article 
    ADS 

    Google Scholar 

  • Seif, J. P. et al. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells. IEEE J. Photovolt. 6, 1132–1140 (2016).

    Article 

    Google Scholar 

  • Lei, C. et al. Phosphorus treatment to promote crystallinity of the microcrystalline silicon front contact layers for highly efficient heterojunction solar cells. Sol. Energy Mater. Sol. Cells 209, 110439 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mazzarella, L. et al. Nanocrystalline n-type silicon oxide front contacts for silicon heterojunction solar cells: photocurrent enhancement on planar and textured substrates. IEEE J. Photovolt. 8, 70–78 (2018).

    Article 

    Google Scholar 

  • Zhao, Y. et al. Design and optimization of hole collectors based on nc-SiOx:H for high-efficiency silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 219, 110779 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. et al. Cerium-doped indium oxide as a top electrode of semitransparent perovskite solar cells. ACS Appl. Mater. Interfaces 15, 10838–10846 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kobayashi, E., Watabe, Y. & Yamamoto, T. High-mobility transparent conductive thin films of cerium-doped hydrogenated indium oxide. Appl. Phys. Express 8, 015505 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Han, C. et al. Towards bifacial silicon heterojunction solar cells with reduced TCO use. Prog. Photovolt. 30, 750–762 (2022).

    Article 
    CAS 

    Google Scholar 

  • Adrian, A., Rudolph, D., Willenbacher, N. & Lossen, J. Finger metallization using pattern transfer printing technology for c-Si solar cell. IEEE J. Photovolt. 10, 1290–1298 (2020).

    Article 

    Google Scholar 

  • Adachi, D., Hernández, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107, 233506 (2015).

    Article 
    ADS 

    Google Scholar 

  • Green, M. A. et al. Solar cell efficiency tables (version 61). Prog. Photovolt. 31, 3–16 (2023).

    Article 

    Google Scholar 

  • Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Mass production of crystalline silicon solar cells with polysilicon-based passivating contacts: an industrial perspective. Prog. Photovolt. 31, 369–379 (2023).

    Article 
    CAS 

    Google Scholar 

  • JinkoSolar’s high-efficiency n-type monocrystalline silicon solar cell sets our new record with maximum conversion efficiency of 26.1%. Jinko Solar https://www.jinkosolar.com/en/site/newsdetail/1775 (2022).

  • JinkoSolar’s high-efficiency n-type monocrystalline silicon solar cell sets our new record with maximum conversion efficiency of 26.4%. Jinko Solar https://www.jinkosolar.com/en/site/newsdetail/1827 (2022).

  • LONGi Solar sets new bifacial mono-PERC solar cell world record at 24.06 percent. LONGi Solar https://www.longi.com/en/news/6821/ (2019).

  • 210 PERC cell efficiency achieves 24.5%, Trina Solar breaks world record for the 24th time. Trina Solar https://www.trinasolar.com/en-glb/resources/newsroom/en210-perc-cell-efficiency-achieves-245-trina-solar-breaks-world-record-24th-time (2022).

  • Repins, I. L., Kersten, F., Hallam, B., VanSant, K. & Koentopp, M. B. Stabilization of light-induced effects in Si modules for IEC 61215 design qualification. Sol. Energy 208, 894–904 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Louwen, A., van Sark, W., Schropp, R. & Faaij, A. A cost roadmap for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 147, 295–314 (2016).

    Article 
    CAS 

    Google Scholar 

  • Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photovolt. 31, 651–663 (2023).

    Article 

    Google Scholar 

  • Yoshikawa, K. et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *