Strange IndiaStrange India


  • 1.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020); publisher correction 581, E3 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Brown, P. T. et al. Bad metallic transport in a cold atom Fermi–Hubbard system. Science 363, 379–382 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005–5016 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Su rez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019). author correction 15, 1205 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Kim, S. et al. Direct measurement of the Fermi energy in graphene using a double-layer heterostructure. Phys. Rev. Lett. 108, 116404 (2012).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Compressibility of the two-dimensional electron gas: measurements of the zero-field exchange energy and fractional quantum Hall gap. Phys. Rev. B 50, 1760–1778 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Setiawan, F. & Das Sarma, S. Temperature-dependent many-body effects in Dirac–Weyl materials: interacting compressibility and quasiparticle velocity. Phys. Rev. B 92, 235103 (2015).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Padhi, B., Setty, C. & Phillips, P. W. Doped twisted bilayer graphene near magic angles: proximity to Wigner crystallization, not Mott insulation. Nano Lett. 18, 6175–6180 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. https://doi.org/10.1038/s41563-020-00911-2 (2021).

  • 27.

    Tomarken, S. L. et al. Electronic compressibility of magic-angle graphene superlattices. Phys. Rev. Lett. 123, 046601 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-020-01129-4 (2021).

  • 30.

    Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-021-01186-3 (2021).

  • 31.

    Streda, P. & Smrcka, L. Thermodynamic derivation of the Hall current and the thermopower in quantising magnetic field. J. Phys. C 16, L895–L899 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Georges, A., de’ Medici, L. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Bruin, J. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing t-linear resistivity. Science 339, 804–807 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Chowdhury, D., Werman, Y., Berg, E. & Senthil, T. Translationally invariant non-fermi-liquid metals with critical Fermi surfaces: solvable models. Phys. Rev. X 8, 031024 (2018).

    CAS 

    Google Scholar 

  • 37.

    Patel, A. A. & Sachdev, S. Theory of a Planckian metal. Phys. Rev. Lett. 123, 066601 (2019).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Hartnoll, S. A. Theory of universal incoherent metallic transport. Nat. Phys. 11, 54–61 (2015).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Perepelitsky, E. et al. Transport and optical conductivity in the Hubbard model: a high-temperature expansion perspective. Phys. Rev. B 94, 235115 (2016).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Pakhira, N. & McKenzie, R. H. Absence of a quantum limit to charge diffusion in bad metals. Phys. Rev. B 91, 075124 (2015).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Kokalj, J. Bad-metallic behavior of doped Mott insulators. Phys. Rev. B 95, 041110 (2017).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Efros, A. L. Negative density of states: screening, Einstein relation, and negative diffusion. Phys. Rev. B 78, 155130 (2008).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Ortix, C., Lorenzana, J. & Di Castro, C. Coulomb-frustrated phase separation phase diagram in systems with short-range negative compressibility. Phys. Rev.Lett. 100, 246402 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *