Strange India All Strange Things About India and world


  • Rivest, R. L., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978).

    MathSciNet 
    MATH 

    Google Scholar 

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (1984).

    MathSciNet 
    MATH 

    Google Scholar 

  • Zhao, Y., Fung, C.-H. F., Qi, B., Chen, C. & Lo, H.-K. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008).

    ADS 

    Google Scholar 

  • Lydersen, L. et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Gerhardt, I. et al. Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011).

  • Weier, H. et al. Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13, 073024 (2011).

    ADS 

    Google Scholar 

  • Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).

    MathSciNet 

    Google Scholar 

  • Mayers, D. & Yao, A. Self testing quantum apparatus. Quantum Inf. Comput. 4, 273–286 (2004).

    MathSciNet 
    MATH 

    Google Scholar 

  • Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Vazirani, U. & Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Arnon-Friedman, R., Dupuis, F., Fawzi, O., Renner, R. & Vidick, T. Practical device-independent quantum cryptography via entropy accumulation. Nat. Commun. 9, 459 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS 
    MATH 

    Google Scholar 

  • Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).

    ADS 

    Google Scholar 

  • Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Acín, A., Gisin, N. & Masanes, L. From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Rubenok, A., Slater, J. A., Chan, P., Lucio-Martinez, I. & Tittel, W. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ferreira da Silva, T. et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88, 052303 (2013).

    ADS 

    Google Scholar 

  • Liu, Y. et al. Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).

    ADS 

    Google Scholar 

  • Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • Masanes, L. Universally composable privacy amplification from causality constraints. Phys. Rev. Lett. 102, 140501 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Reichardt, B. W., Unger, F. & Vazirani, U. Classical command of quantum systems. Nature 496, 456–460 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ho, M. et al. Noisy preprocessing facilitates a photonic realization of device-independent quantum key distribution. Phys. Rev. Lett. 124, 230502 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schwonnek, R. et al. Device-independent quantum key distribution with random key basis. Nat. Commun. 12, 2880 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodhead, E., Acín, A. & Pironio, S. Device-independent quantum key distribution with asymmetric CHSH inequalities. Quantum 5, 443 (2021).

    Google Scholar 

  • Sekatski, P. et al. Device-independent quantum key distribution from generalized CHSH inequalities. Quantum 5, 444 (2021).

    Google Scholar 

  • Brown, P., Fawzi, H. & Fawzi, O. Device-independent lower bounds on the conditional von Neumann entropy. Preprint at https://arXiv.org/abs/2106.13692 (2021).

  • Masini, M., Pironio, S. & Woodhead, E. Simple and practical DIQKD security analysis via BB84-type uncertainty relations and Pauli correlation constraints. Preprint at https://arXiv.org/abs/2107.08894 (2021).

  • Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    ADS 
    MATH 

    Google Scholar 

  • Dupuis, F., Fawzi, O. & Renner, R. Entropy accumulation. Commun. Math. Phys. 379, 867–913 (2020).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Liu, W.-Z. et al. Device-independent randomness expansion against quantum side information. Nat. Phys. 17, 448–452 (2021).

    Google Scholar 

  • Murta, G., van Dam, S. B., Ribeiro, J., Hanson, R. & Wehner, S. Towards a realization of device-independent quantum key distribution. Quantum Sci. Technol. 4, 035011 (2019).

    ADS 

    Google Scholar 

  • Tan, E.Y.-Z. et al. Improved DIQKD protocols with finite-size analysis. Preprint at https://arXiv.org/abs/2012.08714 (2020).

  • Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Maunz, P. et al. Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102, 250502 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lettner, M. et al. Remote entanglement between a single atom and a Bose-Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rosenfeld, W. et al. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Portmann, C. & Renner, R. Security in quantum cryptography. Preprint at https://arXiv.org/abs/2102.00021 (2021).

  • Barrett, J., Colbeck, R. & Kent, A. Memory attacks on device-independent quantum cryptography. Phys. Rev. Lett. 110, 010503 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Pironio, S. et al. Random numbers certified by Bell’s theorem. Nature 464, 1021–1024 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pironio, S. et al. Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009).

    ADS 

    Google Scholar 

  • Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–1236 (2020).

    Google Scholar 

  • Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, T. A. et al. Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band. Phys. Rev. Appl. 10, 044012 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Schupp, J. et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency. PRX Quantum 2, 020331 (2021).

    ADS 

    Google Scholar 

  • Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS 

    Google Scholar 

  • Bourdeauducq, S. et al. m-labs/artiq: 6.0. Zenodo https://doi.org/10.5281/zenodo.6619071 (2021).



  • Source link

    Leave a Reply

    Your email address will not be published.