Strange IndiaStrange India


  • Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernevig, B. A. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Sheng, D. N., Weng, Z. Y., Sheng, L. & Haldane, F. D. M. Quantum spin-Hall effect and topologically invariant Chern numbers. Phys. Rev. Lett. 97, 036808 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    CAS 

    Google Scholar 

  • Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knez, I., Du, R. R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wu, S. F. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Nat. Phys. 20, 275–280 (2024).

  • Wu, F. C., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Devakul, T., Crepel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kennes, D. M. et al. Moire heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mak, K. F. & Shan, J. Semiconductor moire materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, D., Liu, G. B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moire MoTe2. Nature 622, 69–73 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, F. et al. Observation of Integer and Fractional Quantum Anomalous Hall Effects in Twisted Bilayer MoTe2. Phys. Rev. 13, 031037 (2023).

    Article 
    CAS 

    Google Scholar 

  • Reddy, A. P., Alsallom, F. F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

  • Morales-Durán, N., Wei, N., Shi, J. & MacDonald, A. H. Magic angles and fractional Chern insulators in twisted homobilayer TMDs. Preprint at arxiv.org/abs/2308.03143 (2023).

  • Mao, N. et al. Lattice relaxation, electronic structure and continuum model for twisted bilayer MoTe2. Preprint at arxiv.org/abs/2311.07533 (2023).

  • Crépel, V., Regnault, N. & Queiroz, R. The chiral limits of moiré semiconductors: origin of flat bands and topology in twisted transition metal dichalcogenides homobilayers. Preprint at https://arxiv.org/abs/2305.10477 (2023).

  • Jia, Y. et al. Moiré fractional Chern insulators I: first-principles calculations and continuum models of twisted bilayer MoTe2. Preprint at arxiv.org/abs/2311.04958 (2023).

  • Li, B., Qiu, X-W, Wu, F. Electrically tuned topology and magnetism in twisted bilayer MoTe2 at νh = 1. Phys. Rev. B 109, L041106 (2024).

  • Mai, P., Feldman, B. E. & Phillips, P. W. Topological Mott insulator at quarter filling in the interacting Haldane model. Phys. Rev. Res. 5, 013162 (2023).

    Article 
    CAS 

    Google Scholar 

  • Morales-Durán, N. et al. Pressure-enhanced fractional Chern insulators along a magic line in moiré transition metal dichalcogenides. Phys. Rev. Research 5, L032022 (2023).

  • Bai, Y. X. et al. Doubled quantum spin Hall effect with high-spin Chern number in α-antimonene and α-bismuthene. Phys. Rev. B 105, 195142 (2022).

    Article 
    CAS 

    Google Scholar 

  • Levin, M. & Stern, A. Fractional topological insulators. Phys. Rev. Lett. 103, 196803 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Maciejko, J. & Fiete, G. A. Fractionalized topological insulators. Nat. Phys. 11, 385–388 (2015).

    Article 

    Google Scholar 

  • Neupert, T., Chamon, C., Iadecola, T., Santos, L. H. & Mudry, C. Fractional (Chern and topological) insulators. Phys. Scr. 2015, 014005 (2015).

    Article 

    Google Scholar 

  • Stern, A. Fractional topological insulators: a pedagogical review. Annu. Rev. Condens. Matter Phys. 7, 349–368 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wu, Y.-M., Shaffer, D., Wu, Z. & Santos, L. H. Time-reversal invariant topological moiré flatband: a platform for the fractional quantum spin Hall effect. Preprint at https://arxiv.org/abs/2309.07222 (2023).

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

  • Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, Z. et al. Optical readout of the chemical potential of two-dimensional electrons. Nat. Photon. 10.1038/s41566-024-01377-3 (2024).

  • Büttiker, M. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).

    Article 

    Google Scholar 

  • Pack, J. et al. Charge-transfer contact to a high-mobility monolayer semiconductor. Preprint at arxiv.org/abs/2310.19782 (2023).

  • Abanin, D. A. et al. Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *