Onnes, H. K. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 120 (1911).
Ginzburg, V. L. Nobel Lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys. 76, 981–998 (2004).
Google Scholar
Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).
Google Scholar
Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).
Google Scholar
Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).
Google Scholar
Carlsson, A. E. & Ashcroft, N. W. Approaches for reducing the insulator-metal transition pressure in hydrogen. Phys. Rev. Lett. 50, 1305–1308 (1983).
Google Scholar
Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).
Google Scholar
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. 114, 6990–6995 (2017).
Google Scholar
Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
Google Scholar
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Google Scholar
Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 27001 (2019).
Google Scholar
Snider, E. et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett. 126, 117003 (2021).
Google Scholar
Troyan, I. A. et al. Anomalous high‐temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).
Google Scholar
Snider, E. et al. Retraction article: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).
Google Scholar
Snider, E. et al. Retraction note: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 610, 804 (2022).
Google Scholar
Smith, G. A. et al. Carbon content drives high temperature superconductivity in a carbonaceous sulfur hydride below 100 GPa. Chem. Commun. 58, 9064–9067 (2022).
Google Scholar
Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123, 097001 (2019).
Google Scholar
Ge, Y., Zhang, F. & Hemley, R. J. Room-temperature superconductivity in boron- and nitrogen-doped lanthanum superhydride. Phys. Rev. B 104, 214505 (2021).
Google Scholar
Grockowiak, A. D. et al. Hot hydride superconductivity above 550 K. Front. Electron. Mater. 2, 837651 (2022).
Google Scholar
Zhang, Z. et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett. 128, 047001 (2022).
Google Scholar
Di Cataldo, S., Heil, C., von der Linden, W. & Boeri, L. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B 104, L020511 (2021).
Google Scholar
Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968).
Google Scholar
Richardson, C. F. & Ashcroft, N. W. High temperature superconductivity in metallic hydrogen: electron-electron enhancements. Phys. Rev. Lett. 78, 118–121 (1997).
Google Scholar
Dias, R. P. & Silvera, I. F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).
Google Scholar
Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).
Google Scholar
Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. 109, 6463–6466 (2012).
Google Scholar
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
Google Scholar
Bi, T., Zarifi, N., Terpstra, T. & Zurek, E. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2019).
Hilleke, K. P. & Zurek, E. Tuning chemical precompression: theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures. J. Appl. Phys. 131, 070901 (2022).
Google Scholar
Di Cataldo, S., von der Linden, W. & Boeri, L. First-principles search of hot superconductivity in La-X-H ternary hydrides. npj Comput. Mater. 8, 2 (2022).
Di Cataldo, S., Qulaghasi, S., Bachelet, G. B. & Boeri, L. High-Tc superconductivity in doped boron-carbon clathrates. Phys. Rev. B 105, 064516 (2022).
Google Scholar
Ye, X., Zarifi, N., Zurek, E., Hoffmann, R. & Ashcroft, N. W. High hydrides of scandium under pressure: potential superconductors. J. Phys. Chem. C 122, 6298–6309 (2018).
Google Scholar
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).
Google Scholar
Rumble, J. R. (ed.) CRC Handbook of Chemistry and Physics 102nd edn (CRC Press/Taylor & Francis, 2021).
Greenwood, N. N. & Earnshaw, A. (eds) Chemistry of the Elements 2nd edn (Butterworth-Heinemann, 1997).
Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, 6849–6877 (2020).
Google Scholar
Zhou, D. et al. High-pressure synthesis of magnetic neodymium polyhydrides. J. Am. Chem. Soc. 142, 2803–2811 (2020).
Google Scholar
Semenok, D. V. et al. Effect of magnetic impurities on superconductivity in LaH10. Adv. Mater. 34, 2204038 (2022).
Sun, W., Kuang, X., Keen, H. D. J., Lu, C. & Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 102, 144524 (2020).
Google Scholar
Jaroń, T. et al. Synthesis, structure, and electric conductivity of higher hydrides of ytterbium at high pressure. Inorg. Chem. 61, 8694–8702 (2022).
Google Scholar
Song, H. et al. High Tc superconductivity in heavy rare earth hydrides. Chin. Phys. Lett. 38, 107401 (2021).
Google Scholar
Cornelius, A. L., Lawler, K. V. & Salamat, A. Understanding hydrogen rich superconductors: importance of effective mass and dirty limit. Preprint at https://doi.org/10.48550/arxiv.2202.04254 (2022).
Dasenbrock-Gammon, N., McBride, R., Yoo, G., Dissanayake, S. & Dias, R. Second harmonic AC calorimetry technique within a diamond anvil cell. Rev. Sci. Instrum. 93, 093901 (2022).
Google Scholar
Klesnar, H. P. & Rogl, P. Phase relations in the ternary systems rare-earth metal (RE)-boron-nitrogen, where RE = Tb, Dy, Ho, Er, Tm, Lu, Sc and Y. High Temp. High Press. 22, 453–457 (1990).
Google Scholar
Pebler, A. & Wallace, W. E. Crystal structures of some lanthanide hydrides. J. Phys. Chem. 66, 148–151 (1962).
Google Scholar
Bonnet, J. E. & Daou, J. N. Rare‐earth dihydride compounds: lattice thermal expansion and investigation of the thermal dissociation. J. Appl. Phys. 48, 964–968 (1977).
Google Scholar
Weaver, J. H., Rosei, R. & Peterson, D. T. Electronic structure of metal hydrides. I. Optical studies of ScH2, YH2, and LuH2. Phys. Rev. B 19, 4855–4866 (1979).
Google Scholar
Peterman, D. J., Harmon, B. N., Marchiando, J. & Weaver, J. H. Electronic structure of metal hydrides. II. Band theory of ScH2 and YH2. Phys. Rev. B 19, 4867–4875 (1979).
Google Scholar
Daou, J. N., Vajda, P., Burger, J. P. & Shaltiel, D. Percolating electrical conductivity in two phased LuH2+x compounds. Europhys. Lett. 6, 647–651 (1988).
Google Scholar
Daou, J. N., Vajda, P., Burger, J. P. & Shaltiel, D. Percolating electrical conductivity in two phased LuH2+x compounds. Europhys. Lett. 8, 587 (1989).
Google Scholar
Mansmann, M. & Wallace, W. E. The structure of HoD3. J. Phys. 25, 454–459 (1964).
Google Scholar
Palasyuk, T. & Tkacz, M. Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH3, HoH3, LuH3). Solid State Commun. 133, 481–486 (2005).
Google Scholar
Daou, J. N., Lucasson, A., Vajda, P. & Burger, J. P. Observation of the optical and acoustic electron-phonon coupling in Sc, Y and Lu dihydrides and dideuterides by electrical resistivity. J. Phys. F Metal Phys. 14, 2983–2993 (1984).
Google Scholar
Kataoka, R. et al. The origin of the highly crystallized face-centered cubic YH3 high-pressure phase when quenched to ambient condition. Mater. Today Commun. 31, 103265 (2022).
Google Scholar
Renaudin, G., Fischer, P. & Yvon, K. Neodymium trihydride, NdH3, with tysonite type structure. J. Alloys Compd. 313, L10–L14 (2000).
Google Scholar
Villa-Cortés, S. & De la Peña-Seaman, O. Effect of van Hove singularity on the isotope effect and critical temperature of H3S hydride superconductor as a function of pressure. J. Phys. Chem. Solids 161, 110451 (2022).
Google Scholar
Liang, X. et al. Prediction of high-Tc superconductivity in ternary lanthanum borohydrides. Phys. Rev. B 104, 134501 (2021).
Google Scholar
Belli, F. & Errea, I. Impact of ionic quantum fluctuations on the thermodynamic stability and superconductivity of. Phys. Rev. B 106, 134509 (2022).
Google Scholar
Errea, I. Superconducting hydrides on a quantum landscape. J. Phys. Condens. Matter 34, 231501 (2022).
Google Scholar
Shen, G. et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Press. Res. 40, 299–314 (2020).
Google Scholar
Datchi, F. et al. Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell. High Press. Res. 27, 447–463 (2007).
Google Scholar
Dias, R. P., Yoo, C.-S., Kim, M. & Tse, J. S. Insulator-metal transition of highly compressed carbon disulfide. Phys. Rev. B 84, 144104 (2011).
Google Scholar
Li, Y.-S., Borth, R., Hicks, C. W., Mackenzie, A. P. & Nicklas, M. Heat-capacity measurements under uniaxial pressure using a piezo-driven device. Rev. Sci. Instrum. 91, 103903 (2020).
Google Scholar
Kraftmakher, Y. Modulation Calorimetry. Theory and Applications (Springer, 2004).
Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of the pressure dependences of Tc in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 064519 (2008).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Google Scholar
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Google Scholar
van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Google Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
Google Scholar
Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).
Google Scholar
Topsakal, M. & Wentzcovitch, R. M. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu). Comput. Mater. Sci. 95, 263–270 (2014).
Google Scholar
Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Peterman, D. J., Weaver, J. H. & Peterson, D. T. Electronic structure of metal hydrides. V. x-dependent properties of LaHx (1.9 < ~x < 2.9) and NdHx (2.01 < ~x < ~2.27). Phys. Rev. B 23, 3903–3913 (1981).
Google Scholar
Knappe, P., Müller, H. & Mayer, H. W. Tetragonal rare earth hydrides REH(D)≈2.33 (RE = La, Ce, Pr, Nd, Sm) and a neutron diffraction study of NdD2.36. J. Less Common Metals 95, 323–333 (1983).
Google Scholar
Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).
Google Scholar