Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).
Google Scholar
Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).
Google Scholar
Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).
Google Scholar
Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).
Google Scholar
Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).
Google Scholar
Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).
Google Scholar
Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).
Google Scholar
Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).
Google Scholar
Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).
Google Scholar
Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).
Google Scholar
Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).
Google Scholar
Li, Y. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at https://arxiv.org/abs/2107.10714 (2021).
Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).
Google Scholar
Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).
Google Scholar
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Google Scholar
Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).
Google Scholar
Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).
Google Scholar
Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).
Google Scholar
Svistunov, B. V., Babaev, E. S. & Prokof’ev, N. V. Superfluid States of Matter (CRC Press, 2015).
Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).
Google Scholar
Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B. 79, 214502 (2009).
Google Scholar
Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B. 85, 144402 (2012).
Google Scholar
Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
Google Scholar
Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B. 87, 115135 (2013).
Google Scholar
Wang, Z. et al. Distinctive momentum dependent charge-density-wave gap observed in CsV3Sb5 superconductor with topological kagome lattice. Preprint at https://arxiv.org/abs/2104.05556 (2021).
Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).
Google Scholar
Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B. 104, 214513 (2021).
Google Scholar
Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).
Google Scholar
Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).
Google Scholar
Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B. 104, 035142 (2021).
Google Scholar
Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A = K, Rb, Cs). Phys. Rev. B. 104, 045122 (2021).
Google Scholar
Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).
Google Scholar
Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China-Phys. Mech. Astron. 65, 247462 (2022).
Google Scholar
Li, Q., Hücker, M., Gu, G. D., Tsvelik, A. M. & Tranquada, J. M. Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett. 99, 067001 (2007).
Google Scholar
Ning, F. L. et al. Contrasting spin dynamics between underdoped and overdoped Ba(Fe1−xCox)2As2. Phys. Rev. Lett. 104, 037001 (2010).
Google Scholar
Zhou, R., Xing, L. Y., Wang, X. C., Jinz, C. Q. & Zheng, G.-Q. Orbital order and spin nematicity in the tetragonal phase of the electron-doped iron pnictides NaFe1−xCoxAs. Phys. Rev. B. 93, 060502 (2016).
Google Scholar
Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).
Google Scholar
Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).
Google Scholar
Hebel, L. C. & Slichter, C. P. Nuclear spin relaxation in normal and superconducting aluminum. Phys. Rev. 113, 1504–1519 (1959).
Google Scholar
Curro, N. J. Nuclear magnetic resonance in the heavy fermion superconductors. Rep. Prog. Phys. 72, 026502 (2009).
Google Scholar
Uchida, S. Ubiquitous charge order correlations in high-temperature superconducting cuprates. J. Phys. Soc. Jpn 90, 111001 (2021).
Google Scholar
Kitagawa, K. et al. Space efficient opposed-anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa. J. Phys. Soc. Jpn 79, 024001 (2010).
Google Scholar
Yokogawa, K., Murata, K., Yoshino, H. & Aoyama, S. Solidification of high-pressure medium Daphne 7373. Jpn J. Appl. Phys. 46, 3636 (2007).
Google Scholar
Torikachvili, M. S., Kim, S. K., Colombier, E., Bud’ko, S. L. & Canfield, P. C. Solidification and loss of hydrostaticity in liquid media used for pressure measurements. Rev. Sci. Instrum. 86, 123904 (2015).
Google Scholar
Altarawneh, M. M., Mielke, C. H. & Brooks, J. S. Proximity detector circuits: an alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments. Rev. Sci. Instrum. 80, 066104 (2009).
Google Scholar
Ghannadzadeh, S. et al. Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator. Rev. Sci. Instrum. 82, 113902 (2011).
Google Scholar
Ahmida, M. A. et al. Charge fluctuations across the pressure-induced quantum phase transition in EuCu2(Ge1−xSix)2. Phys. Rev. B. 101, 205127 (2020).
Google Scholar
Eckberg, C. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2020).
Google Scholar
McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B. 12, 1187–1196 (1975).
Google Scholar
Luo, J. et al. Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. NPJ Quantum Mater. 7, 30 (2022).
Google Scholar
Zhou, S. & Wang, Z. Doped orbital Chern insulator, Chern Fermi pockets, and chiral topological pair density wave in kagome superconductors. Preprint at https://arxiv.org/abs/2110.06266 (2022).
Yu, J. et al. Evolution of electronic structure in pristine and Rb-reconstructed surfaces of kagome metal RbV3Sb5. Nano Lett. 22, 918–925 (2022).
Google Scholar
Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).
Google Scholar
Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).
Google Scholar
Moriya, T. Nuclear magnetic relaxation in antiferromagnetics. Prog. Theor. Phys. 16, 23–44 (1956).
Google Scholar
Zhang, J.-F., Liu, K. & Lu, Z.-Y. First-principles study of the double-dome superconductivity in the kagome material CsV3Sb5 under pressure. Phys. Rev. B. 104, 195130 (2021).
Google Scholar
Si, J.-G., Lu, W.-J., Sun, Y.-P., Liu, P.-F. & Wang, B.-T. Charge density wave and pressure-dependent superconductivity in the kagome metal CsV3Sb5: a first-principles study. Phys. Rev. B. 105, 024517 (2022).
Google Scholar
Maeda, S., Matano, K. & Zheng, G. Q. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2: 207Pb nuclear magnetic resonance study. Phys. Rev. B. 97, 184510 (2018).
Google Scholar
Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).
Google Scholar
Zhao, J. Z., Wu, W. K., Wang, Y. L. & Yang, S. A. Electronic correlations in the normal state of the kagome superconductor KV3Sb5. Phys. Rev. B. 103, L241117 (2021).
Google Scholar
Di Sante, D. et al. Electronic correlations and universal long-range scaling in kagome metals. Preprint at https://arxiv.org/abs/2203.05038 (2022).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Google Scholar
Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
Google Scholar
Kitagawa, S., Ishida, K., Nakano, K., Yajima, T. & Kageyama, H. S-wave superconductivity in superconducting BaTi2Sb2O revealed by 121/123Sb-NMR/nuclear quadrupole resonance measurements. Phys. Rev. B. 87, 060510(R) (2013).
Google Scholar