Bowler, J. M., Hope, G. S., Jennings, J. N., Singh, G. & Walker, D. Late Quaternary climates of Australia and New Guinea. Quat. Res. 6, 359–394 (1976).
Google Scholar
Sarnthein, M. Sand deserts during glacial maximum and climatic optimum. Nature 272, 43–46 (1978).
Google Scholar
Byrne, M. Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quat. Sci. Rev. 27, 2576–2585 (2008).
Google Scholar
Mynhardt, S. et al. Phylogeography of a morphologically cryptic Golden Mole assemblage from south-eastern Africa. PLoS ONE 10, e0144995 (2015).
Google Scholar
Veth, P. Island in the interior: a model for colonisation of Australia’s arid zone. Archaeol. Oceania 24, 81–92 (1989).
Google Scholar
Williams, M. A. J. Late Pleistocene tropical aridity synchronous in both hemispheres? Nature 253, 617–618 (1975).
Google Scholar
Sage, R. F. & Coleman, J. R. Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci. 6, 18–24 (2001).
Google Scholar
Gerhart, L. M. & Ward, J. K. Plant responses to low [CO2] of the past. New Phytol. 188, 674–95 (2010).
Google Scholar
Scheff, J., Seager, R., Liu, H. B. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).
Google Scholar
Bird, M. I., O’Grady, D. & Ulm, S. Humans, water and the colonization of Australia. Proc. Natl Acad. Sci. USA 113, 11477–11482 (2016).
Google Scholar
Marean, C. W. et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905–908 (2007).
Google Scholar
Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl Acad. Sci. USA 110, 8777–8781 (2013).
Google Scholar
Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).
Google Scholar
Gosling, W. D. et al. A stronger role for long-term moisture change than for CO2 in determining tropical woody vegetation change. Science 376, 653–656 (2022).
Google Scholar
Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev. Geophys. 32, 159–195 (1994).
Google Scholar
Fuhrmann, F., Diensberg, B., Gong, X., Lohmann, G. & Sirocko, F. Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 16, 2221–2238 (2020).
Google Scholar
Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 211, 103790 (2022).
Google Scholar
Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).
Google Scholar
Fairchild, I. J. & Baker, A. Speleothem Science: From Process to Past Environments (Wiley-Blackwell, 2012).
Ayliffe, L. K. et al. 500 ka precipitation record from southeastern Australia: evidence for interglacial relative aridity. Geology 26, 147–150 (1998).
Google Scholar
Weij, R., Woodhead, J., Hellstrom, J. & Sniderman, K. An exploration of the utility of speleothem age distributions for palaeoclimate assessment. Quat. Geochronol. 60, 101112 (2020).
Google Scholar
Scroxton, N. et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 823–833 (2016).
Google Scholar
Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).
Google Scholar
Treble, P. C. et al. Hydroclimate of the Last Glacial Maximum and deglaciation in southern Australia’s arid margin interpreted from speleothem records (23–15 ka). Clim. Past 13, 667–687 (2017).
Google Scholar
Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79 (2018).
Google Scholar
Lamy, F. et al. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl Acad. Sci. USA 116, 23455–23460 (2019).
Google Scholar
Collins, J. A., Schefuß, E., Govin, A., Mulitza, S. & Tiedemann, R. Insolation and glacial–interglacial control on southwestern African hydroclimate over the past 140 000 years. Earth Planet. Sci. Lett. 398, 1–10 (2014).
Google Scholar
Daniau, A.-L. et al. Precession and obliquity forcing of the South African monsoon revealed by sub-tropical fires. Quat. Sci. Rev. 310, 108128 (2023).
Google Scholar
Cruz, F. W. et al. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim. Cosmochim. Acta 71, 2250–2263 (2007).
Google Scholar
Dupont, L. M., Caley, T. & Castañeda, I. S. Effects of atmospheric CO2 variability of the past 800 kyr on the biomes of southeast Africa. Clim. Past 15, 1083–1097 (2019).
Google Scholar
Dupont, L. M., Zhao, X., Charles, C., Faith, J. T. & Braun, D. Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479). Clim. Past 18, 1–21 (2022).
Google Scholar
Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).
Google Scholar
Cohen, T. J. et al. Hydrological transformation coincided with megafaunal extinction in central Australia. Geology 43, 195–198 (2015).
Google Scholar
Fritz, S. C. et al. Hydrologic variation during the last 170,000 years in the Southern Hemisphere tropics of South America. Quat. Res. 61, 95–104 (2004).
Google Scholar
Kristen, I. et al. Hydrological changes in southern Africa over the last 200 ka as recorded in lake sediments from the Tswaing impact crater. S. Afr. J. Geol. 110, 311–326 (2007).
Google Scholar
Otto-Bliesner, B. L. et al. Large-scale features of last interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Clim. Past 17, 63–94 (2021).
Google Scholar
De Deckker, P. et al. Land–sea correlations in the Australian region: 460 ka of changes recorded in a deep-sea core offshore Tasmania. Part 2: the marine compared with the terrestrial record. Aust. J. Earth Sci. 66, 17–36 (2019).
Google Scholar
Petrick, B. et al. Glacial Indonesian throughflow weakening across the Mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).
Google Scholar
Stuut, J.-B. W., Temmesfeld, F. & De Deckker, P. A 550 ka record of aeolian activity near North West Cape, Australia: inferences from grain-size distributions and bulk chemistry of SE Indian Ocean deep-sea sediments. Quat. Sci. Rev. 83, 83–94 (2014).
Google Scholar
Pei, R. et al. Monitoring Australian monsoon variability over the past four glacial cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 568, 110280 (2021).
Google Scholar
Dupont, L. M. & Kuhlmann, H. Glacial–interglacial vegetation change in the Zambezi catchment. Quat. Sci. Rev. 155, 127–135 (2017).
Google Scholar
Ivory, S. J., Lézine, A.-M., Vincens, A. & Cohen, A. S. Waxing and waning of forests: Late Quaternary biogeography of southeast Africa. Glob. Change Biol. 24, 2939–2951 (2018).
Google Scholar
Thompson, J. C. et al. Early human impacts and ecosystem reorganization in southern-central Africa. Sci. Adv. 7, eabf9776 (2021).
Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).
Google Scholar
Hesse, P. P. et al. Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia. Quat. Sci. Rev. 200, 85–105 (2018).
Google Scholar
von der Meden, J. et al. Tufas indicate prolonged periods of water availability linked to human occupation in the southern Kalahari. PLoS ONE 17, e0270104 (2022).
Google Scholar
Carr, A. S. et al. Paleolakes and socioecological implications of last glacial “greening” of the South African interior. Proc. Natl Acad. Sci. USA 120, e2221082120 (2023).
Google Scholar
Novello, V. F. et al. Vegetation and environmental changes in tropical South America from the last glacial to the Holocene documented by multiple cave sediment proxies. Earth Planet. Sci. Lett. 524, 115717 (2019).
Google Scholar
Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).
Google Scholar
Cohen, T. J. et al. Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: varying moisture sources and increased continental aridity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 356–357, 89–108 (2012).
Google Scholar
Sniderman, J. M. K. et al. Vegetation and climate change in southwestern Australia during the Last Glacial Maximum. Geophys. Res. Lett. 46, 1709–1720 (2019).
Google Scholar
Prentice, I. C., Guiot, J. & Harrison, S. P. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, 658–660 (1992).
Google Scholar
Zagwijn, W. H. Vegetation, climate and time-correlations in the Early Pleistocene of Europe. Geol. Mijnbouw 19, 233–244 (1957).
Byrne M. et al. in Plant Life on the Sandplains in Southwest Australia, a Global Biodiversity Hotspot (ed. Lambers, H.) 81–99 (Univ. Western Australia Press, 2014).
Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the Last Glacial Maximum and Terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeolog. Sci. 40, 4612–4625 (2013).
Google Scholar
Holdgate, G. & Gallagher, S. J. Tertiary: a period of transition to marine basin environments. Geol. Soc. Spec. Publ. 23, 289–335 (2003).
Reed, E. H. World Heritage values and conservation status of the Australian fossil mammal sites (Riversleigh/ Naracoorte). Z. Geomorphol. 62, 213–233 (2021).
Google Scholar
Playford, P. E., Cockbain, A. E. & Low, G. H. Geology of the Perth Basin, Western Australia. Geol. Surv. Western Australia Bull. 124, 1–311 (1976).
Google Scholar
Columbu, A., Calabrò, L., Chiarini, V. & De Waele, J. Stalagmites: from science application to museumization. Geoheritage 13, 47 (2021).
Google Scholar
Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J. Anal. At. Spectrom. 18, 1346–1351 (2003).
Google Scholar
Weij, R. et al. Cave opening and fossil accumulation in Naracoorte, Australia, through charcoal and pollen in dated speleothems. Commun. Earth Environ. 3, 210 (2022).
Google Scholar
Woodhead, J. et al. Timescales of speleogenesis in an evolving syngenetic karst: the Tamala Limestone, Western Australia. Geomorphology 399, 108079 (2022).
Google Scholar
Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 1, 289–295 (2006).
Google Scholar
Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013).
Google Scholar
Baker, A., Smart, P. L. & Ford, D. C. Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 100, 291–301 (1993).
Google Scholar
Markowska, M. et al. Semi-arid zone caves: evaporation and hydrological controls on δ18O drip water composition and implications for speleothem paleoclimate reconstructions. Quat. Sci. Rev. 131, 285–301 (2016).
Google Scholar
Baker, A. et al. Global analysis reveals climatic controls on the oxygen isotope composition of cave drip water. Nat. Commun. 10, 2984 (2019).
Google Scholar
Chase, B. et al. South African speleothems reveal influence of high- and low-latitude forcing over the past 113.5 k.y. Geology 49, 1353–1357 (2021).
Google Scholar
Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015).
Google Scholar
Fohlmeister, J. et al. Main controls on the stable carbon isotope composition of speleothems. Geochim. Cosmochim. Acta 279, 67–87 (2020).
Google Scholar
Treble, P. C. et al. Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study. Commun. Earth Environ. 3, 29 (2022).
Google Scholar
Scholz, D. & Mangini, A. Estimating the uncertainty of coral isochron U–Th ages. Quat. Geochronol. 1, 279–288 (2006).
Google Scholar
Sniderman, J. M. K. et al. Pliocene reversal of late Neogene aridification. Proc. Natl Acad. Sci. USA 113, 1999–2004 (2016).
Google Scholar
Matley, K. A., Sniderman, J. M. K., Drinnan, A. D. & Hellstrom, J. C. Late-Holocene environmental change on the Nullarbor Plain, southwest Australia, based on speleothem pollen records. Holocene 30, 672–681 (2020).
Google Scholar
Bennett, K. D. & Willis, K. J. in Tracking Environmental Change Using Lake Sediments Vol. 3 (eds Smol, J. P. et al.) 5–32 (Kluwer Academic, 2001).
Munsterman, D. & Kerstholt, S. Sodium polytungstate, a new non-toxic alternative to bromoform in heavy liquid separation. Rev. Palaeobot. Palynol. 91, 417–422 (1996).
Google Scholar
Members, A. The Australasian Pollen and Spore Atlas V.1.0 (Australian National Univ., 2020).
Willmott, C. J. & Feddema, J. J. A more rational climatic moisture index. Prof. Geogr. 44, 84–88 (1992).
Google Scholar
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Google Scholar
Mast, A. R. & Givnish, T. J. Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. Am. J. Bot. 89, 1311–1323 (2002).
Google Scholar
Kron, K. A. et al. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68, 335–423 (2002).
Google Scholar
Chao, Y.-S. & Huang, Y.-M. Spore morphology and its systematic implication in Pteris (Pteridaceae). PLoS ONE 13, e0207712 (2018).
Google Scholar
McGlone, M. S. Pollen structure of the New Zealand members of the Styphelieae (Epacridaceae). NZ J. Bot. 16, 91–101 (1978).
Google Scholar
Martin, H. A. Monotoca-type (Epacridaceae) pollen in the Late Tertiary of southern Australia. Australian J. Bot. 41, 709–720 (1993).
Google Scholar
Taaffe, G., Brown, E. A., Crayn, D. M., Gadek, P. A. & Quinn, C. J. Generic concepts in Styphelieae: resolving the limits of Leucopogon. Australian J. Bot. 49, 107–120 (2001).
Google Scholar
Wurdack, K. J., Hoffmann, P. & Chase, M. W. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL-F DNA sequences. Am. J. Bot. 92, 1397–1420 (2005).
Google Scholar
Nowicke, J. W., Takahashi, M. & Webster, G. L. Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae)—Part 1. Tribes Clutieae (Clutia), Pogonophoreae (Pogonophora), Chaetocarpeae (Chaetocarpus, Trigonopleura), Pereae (Pera), Cheiloseae (Cheilosa, Neoscortechinia), Erismantheae pro parte (Erismanthus, Moultonianthus), Dicoelieae (Dicoelia), Galearieae (Galearia, Microdesmis, Panda) and Ampereae (Amperea, Monotaxis). Rev. Palaeobot. Palynol. 102, 115–152 (1998).
Google Scholar
Robbrecht, E. Pollen morphology of the tribes Anthospermeae and Paederieae (Rubiaceae) in relation to taxonomy. Bull. Jard. Bot. Natl Belg. 52, 349–366 (1982).
Google Scholar
R Core Group R: A Language and Environment for Statistical Computing (Foundation for Statistical Computing, 2022).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2 (CGIAR-CSI, 2018).
Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).
Google Scholar
raster: Geographic Data Analysis and Modeling. R package version 3.5-21 (2022).
Atkinson, T. C., Briffa, K. R. & Coope, G. R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, 587–592 (1987).
Google Scholar
Thompson, R. S. et al. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique. Quat. Sci. Rev. 51, 18–39 (2012).
Google Scholar
Chevalier, M. et al. Pollen-based climate reconstruction techniques for Late Quaternary studies. Earth Sci. Rev. 210, 103384 (2020).
Google Scholar
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Campos, M. C. et al. A new mechanism for millennial scale positive precipitation anomalies over tropical South America. Quat. Sci. Rev. 225, 105990 (2019).
Google Scholar
Govin, A. et al. Terrigenous input off northern South America driven by changes in Amazonian climate and the North Brazil Current retroflection during the last 250 ka. Clim. Past 10, 843–862 (2014).
Google Scholar
geoChronR: Tools to Analyze and Visualize Time-Uncertain Data. R package version 1.1.7 (2021).
Meyers, S.R. astrochron: An R Package for Astrochronology https://cran.r-project.org/package=astrochron (2014).
Thompson, D. J. Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982).
Google Scholar
Vaughan, S., Bailey, R. J. & Smith, D. G. Detecting cycles in stratigraphic data: spectral analysis in the presence of red noise. Paleoceanography https://doi.org/10.1029/2011PA002195 (2011).
Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. EOS Trans. 77, 379 (1996).
Google Scholar
Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden Day, 1968).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman & Hall, 2017).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
Google Scholar
Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2021).
Google Scholar
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. qgam: Bayesian nonparametric quantile regression modeling in R. J. Stat. Softw. 100, 1–31 (2021).
Google Scholar
mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. R package version 1.8-40 (2021).
Hu, J., Emile-Geay, J. & Partin, J. Correlation-based interpretations of paleoclimate data—where statistics meet past climates. Earth Planet. Sci. Lett. 459, 362–371 (2017).
Google Scholar
Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.3.3 https://CRAN.R-project.org/package=rnaturalearth (2023).