Strange IndiaStrange India


  • Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tancogne-Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv. Mater. 30, 1803334 (2018).

    Article 

    Google Scholar 

  • Berger, J. B., Wadley, H. N. & McMeeking, R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krödel, S. & Daraio, C. Microlattice metamaterials for tailoring ultrasonic transmission with elastoacoustic hybridization. Phys. Rev. Appl. 6, 064005 (2016).

    Article 

    Google Scholar 

  • Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayat, A. & Gaitanaros, S. Wave directionality in three-dimensional periodic lattices. J. Appl. Mech. 85, 011004 (2017).

    Article 

    Google Scholar 

  • Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lai, C. Q. & Daraio, C. Highly porous microlattices as ultrathin and efficient impact absorbers. Int. J. Impact Eng. 120, 138–149 (2018).

    Article 

    Google Scholar 

  • Dattelbaum, D. M., Ionita, A., Patterson, B. M., Branch, B. A. & Kuettner, L. Shockwave dissipation by interface-dominated porous structures. AIP Adv. 10, 075016 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mueller, J., Matlack, K. H., Shea, K. & Daraio, C. Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2, 1900081 (2019).

    Article 

    Google Scholar 

  • Weeks, J. S. & Ravichandran, G. High strain-rate compression behavior of polymeric rod and plate Kelvin lattice structures. Mech. Mater. 166, 104216 (2022).

    Article 

    Google Scholar 

  • Guo, Y. et al. Minimal surface-based materials for topological elastic wave guiding. Adv. Funct. Mater. 32, 2204122 (2022).

    Article 
    CAS 

    Google Scholar 

  • Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A. & Daraio, C. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proc. Natl Acad. Sci. 113, 8386–8390 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hussein, M. I. & Frazier, M. J. Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013).

    Article 

    Google Scholar 

  • Hawreliak, J. A. et al. Dynamic behavior of engineered lattice materials. Sci. Rep. 6, 28094 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lind, J., Robinson, A. K. & Kumar, M. Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression. J. Appl. Phys. 128, 015901 (2020).

    Article 
    CAS 

    Google Scholar 

  • Crook, C. et al. Plate-nanolattices at the theoretical limit of stiffness and strength. Nat. Commun. 11, 1579 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Portela, C. M. et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc. Natl Acad. Sci. 117, 5686–5693 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).

    Article 
    CAS 

    Google Scholar 

  • Babaee, S. et al. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farzaneh, A., Pawar, N., Portela, C. M. & Hopkins, J. B. Sequential metamaterials with alternating Poisson’s ratios. Nat. Commun. 13, 1041 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Baravelli, E. & Ruzzene, M. Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332, 6562–6579 (2013).

    Article 

    Google Scholar 

  • Iglesias Martínez, J. A. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meza, L. R. et al. Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater. 140, 424–432 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lind, J., Jensen, B. J., Barham, M. & Kumar, M. In situ dynamic compression wave behavior in additively manufactured lattice materials. J. Mater. Res. 34, 2–19 (2019).

    Article 
    CAS 

    Google Scholar 

  • Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the structure–property map of truss metamaterials by deep learning. Proc. Natl Acad. Sci. 119, e2111505119 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weeks, J. S., Gandhi, V. & Ravichandran, G. Shock compression behavior of stainless steel 316L octet-truss lattice structures. Int. J. Impact Eng. 169, 104324 (2022).

    Article 

    Google Scholar 

  • Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 116, 14–28 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gongora, A. E. et al. Designing lattices for impact protection using transfer learning. Matter 5, 2829–2846 (2022).

    Article 

    Google Scholar 

  • Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abi Ghanem, M. et al. Longitudinal eigenvibration of multilayer colloidal crystals and the effect of nanoscale contact bridges. Nanoscale 11, 5655–5665 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akimov, A., Young, E., Sharp, J., Gusev, V. & Kent, A. Coherent hypersonic closed-pipe organ like modes in supported polymer films. Appl. Phys. Lett. 99, 021912 (2011).

    Article 

    Google Scholar 

  • Dryburgh, P. et al. Measurement of the single crystal elasticity matrix of polycrystalline materials. Acta Mater. 225, 117551 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rohbeck, N. et al. Effect of high strain rates and temperature on the micromechanical properties of 3D-printed polymer structures made by two-photon lithography. Mater. Des. 195, 108977 (2020).

    Article 
    CAS 

    Google Scholar 

  • Salari-Sharif, L. et al. Damping of selectively bonded 3D woven lattice materials. Sci. Rep. 8, 14572 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pouet, B. F. & Rasolofosaon, N. J. P. Measurement of broadband intrinsic ultrasonic attenuation and dispersion in solids with laser techniques. J. Acoust. Soc. Am. 93, 1286–1292 (1993).

    Article 

    Google Scholar 

  • Garrett, S. L. Understanding Acoustics: An Experimentalist’s View of Sound and Vibration (Springer, 2020).

  • Szabo, T. L. Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96, 491–500 (1994).

    Article 

    Google Scholar 

  • Szabo, T. L. & Wu, J. A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107, 2437–2446 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patil, G. U. & Matlack, K. H. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization. J. Acoust. Soc. Am. 145, 1259–1269 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Graff, K. F. Wave Motion in Elastic Solids (Dover Publications, 2012).

  • Gross, A., Pantidis, P., Bertoldi, K. & Gerasimidis, S. Correlation between topology and elastic properties of imperfect truss-lattice materials. J. Mech. Phys. Solids 124, 577–598 (2019).

    Article 

    Google Scholar 

  • Liu, L., Kamm, P., García-Moreno, F., Banhart, J. & Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 107, 160–184 (2017).

    Article 
    MathSciNet 

    Google Scholar 

  • Glaesener, R. et al. Predicting the influence of geometric imperfections on the mechanical response of 2D and 3D periodic trusses. Acta Mater. 254, 118918 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *