Pyne, S. J. Fire in America: A Cultural History of Wildland and Rural Fire (Univ. Washington Press, 2017).
Zhang, T., Wooster, M. J. & Xu, W. Approaches for synergistically exploiting VIIRS I- and M-Band data in regional active fire detection and FRP assessment: a demonstration with respect to agricultural residue burning in Eastern China. Remote Sens. Environ. 198, 407–424 (2017).
Google Scholar
Vadrevu, K. P., Ellicott, E., Badarinath, K. & Vermote, E. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 159, 1560–1569 (2011).
Google Scholar
McHugh, C. W. & Gleason, P. in Hayman Fire Case Study General Technical Report RMRS-GTR-114 (ed. Graham, R. T.) 131–144 (USDA Forest Service, 2003).
Arno, S. F. in Wildland Fire in Ecosystems: Effects of Fire on Flora General Technical Report RMRS-GTR-42-vol 2 (eds Brown, J. K. & Smith, J. K.) 97–120 (USDA Forest Service, 2000).
Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022).
Google Scholar
Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi‐decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).
Google Scholar
Davy, R., Esau, I., Chernokulsky, A., Outten, S. & Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37, 79–93 (2017).
Google Scholar
Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).
Google Scholar
Williamson, G. J. et al. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environ. Res. Lett. 11, 035003 (2016).
Google Scholar
Freeborn, P. H., Jolly, W. M., Cochrane, M. A. & Roberts, G. Large wildfire driven increases in nighttime fire activity observed across CONUS from 2003–2020. Remote Sens. Environ. 268, 112777 (2022).
Google Scholar
Giglio, L., Csiszar, I. & Justice, C. O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci. 111, G02016 (2006).
Google Scholar
Giglio, L. Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sens. Environ. 108, 407–421 (2007).
Google Scholar
Roberts, G., Wooster, M. & Lagoudakis, E. Annual and diurnal African biomass burning temporal dynamics. Biogeosciences 6, 849–866 (2009).
Google Scholar
Amraoui, M., DaCamara, C. & Pereira, J. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sens. Environ. 114, 1038–1052 (2010).
Google Scholar
Maier, S. W. & Russell-Smith, J. in Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World (eds Bradstock, R. A. et al.) 79–95 (CSIRO Publishing, 2012).
Andela, N., Kaiser, J., van der Werf, G. & Wooster, M. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations. Atmos. Chem. Phys. 15, 8831–8846 (2015).
Google Scholar
Balch, J. K. et al. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. Bioscience 65, 893–905 (2015).
Google Scholar
Van Wagner, C. E. Development and Structure of the Canadian Forest Fire Weather Index System (Canadian Forestry Service, 1987).
Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).
Google Scholar
Wang, X., Swystun, T. & Flannigan, M. D. Future wildfire extent and frequency determined by the longest fire-conducive weather spell. Sci. Total Environ. 830, 154752 (2022).
Google Scholar
Groot, W. J. D., Field, R. D., Brady, M. A., Roswintiarti, O. & Mohamad, M. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strateg. Glob. Change 12, 165–180 (2007).
Google Scholar
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
Google Scholar
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).
Google Scholar
Di Giuseppe, F. et al. The potential predictability of fire danger provided by numerical weather prediction. J. Appl. Meteorol. Climatol. 55, 2469–2491 (2016).
Google Scholar
Wotton, B. M. in Proc. Eighth Symposium on Fire and Forest Meteorology 13–15 (American Meteorological Society, 2009).
Wotton, B. M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 16, 107–131 (2009).
Google Scholar
Bistinas, I., Harrison, S., Prentice, I. & Pereira, J. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences 11, 5087–5101 (2014).
Google Scholar
Viney, N. R. A review of fine fuel moisture modelling. Int. J. Wildland Fire 1, 215–234 (1991).
Google Scholar
Cohen, J. D. & Deeming, J. E. The National Fire-danger Rating System: Basic Equations General Technical Report PSW-82 16 (U.S. Department of Agriculture, Forest Service, 1985).
Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Wooster, M. J. et al. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ. 267, 112694 (2021).
Google Scholar
Podur, J. & Wotton, B. M. Defining fire spread event days for fire-growth modelling. Int. J. Wildland Fire 20, 497–507 (2011).
Google Scholar
Ho, T. K. in Proc. 3rd International Conference on Document Analysis and Recognition 278–282 (IEEE, 1995).
Zachariassen, J., Zeller, K. F., Nikolov, N. & McClelland, T. A Review of the Forest Service Remote Automated Weather Station (RAWS) Network General Technical Report RMRS-GTR-119 (U.S. Department of Agriculture, Forest Service, 2003).
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).
Google Scholar
Vincent, G. E. et al. Sleep in wildland firefighters: what do we know and why does it matter? Int. J. Wildland Fire 27, 73–84 (2018).
Google Scholar
Page, W. G., Freeborn, P. H., Butler, B. W. & Jolly, W. M. A review of US wildland firefighter entrapments: trends, important environmental factors and research needs. Int. J. Wildland Fire 28, 551–569 (2019).
Google Scholar
Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020).
Google Scholar
Tymstra, C., Jain, P. & Flannigan, M. D. Characterisation of initial fire weather conditions for large spring wildfires in Alberta, Canada. Int. J. Wildland Fire 30, 823–835 (2021).
Google Scholar
van Wagtendonk, J. W. in Fire in California’s Ecosystems (eds Sugihara, N. G. et al.) 38–57 (Univ. California Press, 2006).
Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).
Google Scholar
Bowman, D. M. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
Google Scholar
Vose, R. S., Easterling, D. R. & Gleason, B. Maximum and minimum temperature trends for the globe: an update through 2004. Geophys. Res. Lett. 32, L23822 (2005).
Google Scholar
Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).
Google Scholar
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).
Google Scholar
Wang, X. et al. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Change 130, 573–586 (2015).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
Google Scholar
Hall, R. et al. Generating annual estimates of forest fire disturbance in Canada: the National Burned Area Composite. Int. J. Wildland Fire 29, 878–891 (2020).
Google Scholar
Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).
Google Scholar
Welty, J. & Jeffries, M. Combined Wildland Fire Datasets for the United States and Certain Territories, 1800s-Present (U.S. Geological Survey, 2021); https://doi.org/10.5066/P9ZXGFY3.
Hall, J. V., Zhang, R., Schroeder, W., Huang, C. & Giglio, L. Validation of GOES-16 ABI and MSG SEVIRI active fire products. Int. J. Appl. Earth Obs. Geoinf. 83, 101928 (2019).
Wooster, M. J. et al. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF) – part 1: algorithms, product contents and analysis. Atmos. Chem. Phys. Discuss. 15, 15831–15907 (2015).
Google Scholar
Page, W. G., Jenkins, M. J. & Alexander, M. E. Foliar moisture content variations in lodgepole pine over the diurnal cycle during the red stage of mountain pine beetle attack. Environ. Model. Softw. 49, 98–102 (2013).
Google Scholar
Van Wagner, C. E. A Method of Computing Fine Fuel Moisture Content Throughout the Diurnal Cycle Information Report PS-X-69 (Canadian Forestry Service, 1977).
Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).
Google Scholar
Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
Google Scholar
Di Giuseppe, F. et al. Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci. 20, 2365–2378 (2020).
Google Scholar
Wang, X. et al. cffdrs: an R package for the Canadian Forest Fire Danger Rating System. Ecol. Process. 6, 5 (2017).
Google Scholar
McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis of global fire weather from 1979 to 2018–overwintering the Drought Code. Earth Syst. Sci. Data 12, 1823–1833 (2020).
Google Scholar
Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. Climatol. 35, 601–609 (1996).
Google Scholar
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).
Google Scholar
Kuhn, M. Caret: classification and regression training. Astrophysics Source Code Library, record ascl:1505.003; https://ascl.net/1505.003 (accessed 20 May 2022).