Strange IndiaStrange India


  • Pyne, S. J. Fire in America: A Cultural History of Wildland and Rural Fire (Univ. Washington Press, 2017).

  • Zhang, T., Wooster, M. J. & Xu, W. Approaches for synergistically exploiting VIIRS I- and M-Band data in regional active fire detection and FRP assessment: a demonstration with respect to agricultural residue burning in Eastern China. Remote Sens. Environ. 198, 407–424 (2017).

    Article 
    ADS 

    Google Scholar 

  • Vadrevu, K. P., Ellicott, E., Badarinath, K. & Vermote, E. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 159, 1560–1569 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McHugh, C. W. & Gleason, P. in Hayman Fire Case Study General Technical Report RMRS-GTR-114 (ed. Graham, R. T.) 131–144 (USDA Forest Service, 2003).

  • Arno, S. F. in Wildland Fire in Ecosystems: Effects of Fire on Flora General Technical Report RMRS-GTR-42-vol 2 (eds Brown, J. K. & Smith, J. K.) 97–120 (USDA Forest Service, 2000).

  • Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi‐decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).

    Article 
    ADS 

    Google Scholar 

  • Davy, R., Esau, I., Chernokulsky, A., Outten, S. & Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 37, 79–93 (2017).

    Article 

    Google Scholar 

  • Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article 
    ADS 

    Google Scholar 

  • Williamson, G. J. et al. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environ. Res. Lett. 11, 035003 (2016).

    Article 
    ADS 

    Google Scholar 

  • Freeborn, P. H., Jolly, W. M., Cochrane, M. A. & Roberts, G. Large wildfire driven increases in nighttime fire activity observed across CONUS from 2003–2020. Remote Sens. Environ. 268, 112777 (2022).

    Article 

    Google Scholar 

  • Giglio, L., Csiszar, I. & Justice, C. O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci. 111, G02016 (2006).

    Article 
    ADS 

    Google Scholar 

  • Giglio, L. Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sens. Environ. 108, 407–421 (2007).

    Article 
    ADS 

    Google Scholar 

  • Roberts, G., Wooster, M. & Lagoudakis, E. Annual and diurnal African biomass burning temporal dynamics. Biogeosciences 6, 849–866 (2009).

    Article 
    ADS 

    Google Scholar 

  • Amraoui, M., DaCamara, C. & Pereira, J. Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sens. Environ. 114, 1038–1052 (2010).

    Article 
    ADS 

    Google Scholar 

  • Maier, S. W. & Russell-Smith, J. in Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World (eds Bradstock, R. A. et al.) 79–95 (CSIRO Publishing, 2012).

  • Andela, N., Kaiser, J., van der Werf, G. & Wooster, M. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations. Atmos. Chem. Phys. 15, 8831–8846 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Balch, J. K. et al. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. Bioscience 65, 893–905 (2015).

    Article 

    Google Scholar 

  • Van Wagner, C. E. Development and Structure of the Canadian Forest Fire Weather Index System (Canadian Forestry Service, 1987).

  • Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).

    Article 
    ADS 

    Google Scholar 

  • Wang, X., Swystun, T. & Flannigan, M. D. Future wildfire extent and frequency determined by the longest fire-conducive weather spell. Sci. Total Environ. 830, 154752 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Groot, W. J. D., Field, R. D., Brady, M. A., Roswintiarti, O. & Mohamad, M. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strateg. Glob. Change 12, 165–180 (2007).

    Article 

    Google Scholar 

  • Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    Article 
    ADS 

    Google Scholar 

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Di Giuseppe, F. et al. The potential predictability of fire danger provided by numerical weather prediction. J. Appl. Meteorol. Climatol. 55, 2469–2491 (2016).

    Article 
    ADS 

    Google Scholar 

  • Wotton, B. M. in Proc. Eighth Symposium on Fire and Forest Meteorology 13–15 (American Meteorological Society, 2009).

  • Wotton, B. M. Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environ. Ecol. Stat. 16, 107–131 (2009).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Bistinas, I., Harrison, S., Prentice, I. & Pereira, J. Causal relationships versus emergent patterns in the global controls of fire frequency. Biogeosciences 11, 5087–5101 (2014).

    Article 
    ADS 

    Google Scholar 

  • Viney, N. R. A review of fine fuel moisture modelling. Int. J. Wildland Fire 1, 215–234 (1991).

    Article 

    Google Scholar 

  • Cohen, J. D. & Deeming, J. E. The National Fire-danger Rating System: Basic Equations General Technical Report PSW-82 16 (U.S. Department of Agriculture, Forest Service, 1985).

  • Schmit, T. J. et al. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681–698 (2017).

    Article 
    ADS 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wooster, M. J. et al. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ. 267, 112694 (2021).

    Article 

    Google Scholar 

  • Podur, J. & Wotton, B. M. Defining fire spread event days for fire-growth modelling. Int. J. Wildland Fire 20, 497–507 (2011).

    Article 

    Google Scholar 

  • Ho, T. K. in Proc. 3rd International Conference on Document Analysis and Recognition 278–282 (IEEE, 1995).

  • Zachariassen, J., Zeller, K. F., Nikolov, N. & McClelland, T. A Review of the Forest Service Remote Automated Weather Station (RAWS) Network General Technical Report RMRS-GTR-119 (U.S. Department of Agriculture, Forest Service, 2003).

  • Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vincent, G. E. et al. Sleep in wildland firefighters: what do we know and why does it matter? Int. J. Wildland Fire 27, 73–84 (2018).

    Article 

    Google Scholar 

  • Page, W. G., Freeborn, P. H., Butler, B. W. & Jolly, W. M. A review of US wildland firefighter entrapments: trends, important environmental factors and research needs. Int. J. Wildland Fire 28, 551–569 (2019).

    Article 

    Google Scholar 

  • Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020).

    Article 

    Google Scholar 

  • Tymstra, C., Jain, P. & Flannigan, M. D. Characterisation of initial fire weather conditions for large spring wildfires in Alberta, Canada. Int. J. Wildland Fire 30, 823–835 (2021).

    Article 

    Google Scholar 

  • van Wagtendonk, J. W. in Fire in California’s Ecosystems (eds Sugihara, N. G. et al.) 38–57 (Univ. California Press, 2006).

  • Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bowman, D. M. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 
    ADS 

    Google Scholar 

  • Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Article 
    ADS 

    Google Scholar 

  • Vose, R. S., Easterling, D. R. & Gleason, B. Maximum and minimum temperature trends for the globe: an update through 2004. Geophys. Res. Lett. 32, L23822 (2005).

    Article 
    ADS 

    Google Scholar 

  • Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).

    Article 

    Google Scholar 

  • Wang, X. et al. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Change 130, 573–586 (2015).

    Article 
    ADS 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Hall, R. et al. Generating annual estimates of forest fire disturbance in Canada: the National Burned Area Composite. Int. J. Wildland Fire 29, 878–891 (2020).

    Article 

    Google Scholar 

  • Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).

    Article 

    Google Scholar 

  • Welty, J. & Jeffries, M. Combined Wildland Fire Datasets for the United States and Certain Territories, 1800s-Present (U.S. Geological Survey, 2021); https://doi.org/10.5066/P9ZXGFY3.

  • Hall, J. V., Zhang, R., Schroeder, W., Huang, C. & Giglio, L. Validation of GOES-16 ABI and MSG SEVIRI active fire products. Int. J. Appl. Earth Obs. Geoinf. 83, 101928 (2019).

    Google Scholar 

  • Wooster, M. J. et al. Meteosat SEVIRI Fire Radiative Power (FRP) products from the Land Surface Analysis Satellite Applications Facility (LSA SAF) – part 1: algorithms, product contents and analysis. Atmos. Chem. Phys. Discuss. 15, 15831–15907 (2015).

    ADS 

    Google Scholar 

  • Page, W. G., Jenkins, M. J. & Alexander, M. E. Foliar moisture content variations in lodgepole pine over the diurnal cycle during the red stage of mountain pine beetle attack. Environ. Model. Softw. 49, 98–102 (2013).

    Article 

    Google Scholar 

  • Van Wagner, C. E. A Method of Computing Fine Fuel Moisture Content Throughout the Diurnal Cycle Information Report PS-X-69 (Canadian Forestry Service, 1977).

  • Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).

    Article 
    ADS 

    Google Scholar 

  • Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Giuseppe, F. et al. Fire Weather Index: the skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci. 20, 2365–2378 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wang, X. et al. cffdrs: an R package for the Canadian Forest Fire Danger Rating System. Ecol. Process. 6, 5 (2017).

    Article 
    CAS 

    Google Scholar 

  • McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis of global fire weather from 1979 to 2018–overwintering the Drought Code. Earth Syst. Sci. Data 12, 1823–1833 (2020).

    Article 
    ADS 

    Google Scholar 

  • Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. Climatol. 35, 601–609 (1996).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0450%281996%29035%3C0601%3AIMFAOS%3E2.0.CO%3B2″ aria-label=”Article reference 63″ data-doi=”10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuhn, M. Caret: classification and regression training. Astrophysics Source Code Library, record ascl:1505.003; https://ascl.net/1505.003 (accessed 20 May 2022).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *