Strange IndiaStrange India


  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlisle, A. E. et al. Selenium detoxification is required for cancer-cell survival. Nat. Metab. 2, 603–611 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spears, M. E. et al. De novo sphingolipid biosynthesis necessitates detoxification in cancer cells. Cell Rep. 40, 111415 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, N., Spears, M. E., Carlisle, A. E. & Kim, D. Endogenous toxic metabolites and implications in cancer therapy. Oncogene 39, 5709–5720 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Axelrod, J., Kalckar, H. M., Maxwell, E. S. & Strominger, J. L. Enzymatic formation of uridine diphosphoglucuronic acid. J. Biol. Chem. 224, 79–90 (1957).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prydz, K. & Dalen, K. T. Synthesis and sorting of proteoglycans. J. Cell Sci. 113, 193–205 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mulder, G. J. Glucuronidation and its role in regulation of biological activity of drugs. Annu. Rev. Pharmacol. Toxicol. 32, 25–49 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moriarity, J. L. et al. UDP-glucuronate decarboxylase, a key enzyme in proteoglycan synthesis: cloning, characterization, and localization. J. Biol. Chem. 277, 16968–16975 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kakizaki, I. et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J. Biol. Chem. 279, 33281–33289 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kultti, A. et al. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp. Cell. Res. 315, 1914–1923 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clarkin, C. E., Allen, S., Wheeler-Jones, C. P., Bastow, E. R. & Pitsillides, A. A. Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase. Matrix Biol. 30, 163–168 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjellén, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vitale, D. et al. Proteoglycans and glycosaminoglycans as regulators of cancer stem cell function and therapeutic resistance. FEBS J. 286, 2870–2882 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neufeld, E. F. & Hall, C. W. Inhibition of UDP-D-glucose dehydrogenase by UDP-D-xylose: a possible regulatory mechanism. Biochem. Biophys. Res. Commun. 19, 456–461 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gainey, P. A. & Phelps, C. F. Interactions of uridine diphosphate glucose dehydrogenase with the inhibitor uridine diphosphate xylose. Biochem. J 145, 129–134 (1975).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beattie, N. R., Keul, N. D., Sidlo, A. M. & Wood, Z. A. Allostery and hysteresis are coupled in human UDP-glucose dehydrogenase. Biochemistry 56, 202–211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reiling, J. H. et al. A CREB3–ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat. Cell Biol. 15, 1473–1485 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ignashkova, T. I. et al. Cell survival and protein secretion associated with Golgi integrity in response to Golgi stress-inducing agents. Traffic 18, 530–544 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hiraoka, S. et al. Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat. Med. 13, 1363–1367 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stanley, P. Golgi glycosylation. Cold Spring Harb. Perspect. Biol. 3, a005199 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Varki, A. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol. 8, 34–40 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tarentino, A. L., Gomez, C. M. & Plummer, T. H. Jr Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F. Biochemistry 24, 4665–4671 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Unal, E. S., Zhao, R., Qiu, A. & Goldman, I. D. N-linked glycosylation and its impact on the electrophoretic mobility and function of the human proton-coupled folate transporter (HsPCFT). Biochim. Biophys. Acta 1778, 1407–1414 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Contessa, J. N., Bhojani, M. S., Freeze, H. H., Rehemtulla, A. & Lawrence, T. S. Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res. 68, 3803–3809 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hakuno, F. & Takahashi, S.-I. IGF1 receptor signaling pathways. J. Mol. Endocrinol. 61, T69–T86 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ouhtit, A., Rizeq, B., Saleh, H. A., Rahman, M. M. & Zayed, H. Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int. J. Biol. Sci. 14, 1782–1790 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jayaprakash, N. G. & Surolia, A. Role of glycosylation in nucleating protein folding and stability. Biochem. J. 474, 2333–2347 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lis, H. & Sharon, N. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem. 218, 1–27 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taylor, E. S., Pol-Fachin, L., Lins, R. D. & Lower, S. K. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding. Proteins 85, 561–570 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saha, S. et al. UDP-glucose 6-dehydrogenase expression as a predictor of survival in patients with pulmonary adenocarcinoma. Int. J. Surg. Oncol. 5, e85 (2020).

    Google Scholar 

  • Hagiuda, D. et al. Clinicopathological and prognostic significance of nuclear UGDH localization in lung adenocarcinoma. Biomed. Res. 40, 17–27 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arnold, J. M. et al. UDP-glucose 6-dehydrogenase regulates hyaluronic acid production and promotes breast cancer progression. Oncogene 39, 3089–3101 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teoh, S. T., Ogrodzinski, M. P. & Lunt, S. Y. UDP-glucose 6-dehydrogenase knockout impairs migration and decreases in vivo metastatic ability of breast cancer cells. Cancer Lett. 492, 21–30 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, L.-H. et al. Targeting UDP-glucose dehydrogenase inhibits ovarian cancer growth and metastasis. J. Cell. Mol. Med. 24, 11883–11902 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, T. et al. A mouse knockout library for secreted and transmembrane proteins. Nat. Biotechnol. 28, 749–755 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vitale, D. L. et al. Initial identification of UDP-glucose dehydrogenase as a prognostic marker in breast cancer patients, which facilitates epirubicin resistance and regulates hyaluronan synthesis in MDA-MB-231 cells. Biomolecules 11, 246 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed, N. et al. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells. Sci. Rep. 6, 30061 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paul, D. et al. Global proteomic profiling identifies etoposide chemoresistance markers in non-small cell lung carcinoma. J. Proteomics 138, 95–105 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Radominska-Pandya, A., Bratton, S. M., Redinbo, M. R. & Miley, M. J. The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families. Drug Metab. Rev. 42, 133–144 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mackenzie, P. I. et al. Regulation of UDP glucuronosyltransferase genes. Curr. Drug Metab. 4, 249–257 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagar, S. & Blanchard, R. L. Pharmacogenetics of uridine diphosphoglucuronosyltransferase (UGT) 1A family members and its role in patient response to irinotecan. Drug Metab. Rev. 38, 393–409 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barger, C. J., Branick, C., Chee, L. & Karpf, A. R. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers 11, 251 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nonnenmacher, Y. et al. Analysis of mitochondrial metabolism in situ: Combining stable isotope labeling with selective permeabilization. Metab. Eng. 43, 147–155 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vercesi, A. E., Bernardes, C. F., Hoffmann, M. E., Gadelha, F. R. & Docampo, R. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J. Biol. Chem. 266, 14431–14434 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *