Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
Google Scholar
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Google Scholar
Gaebler, J. P. et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett. 117, 060505 (2016).
Google Scholar
Ballance, C. J., Harty, T. P., Linke, N. M., Sepiol, M. A. & Lucas, D. M. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).
Google Scholar
Christensen, J. E., Hucul, D., Campbell, W. C. & Hudson, E. R. High-fidelity manipulation of a qubit enabled by a manufactured nucleus. npj Quant. Inf. 6, 35 (2020).
Google Scholar
Wan, Y. et al. Quantum gate teleportation between separated qubits in a trapped-ion processor. Science 364, 875–878 (2019).
Google Scholar
Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).
Google Scholar
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
Google Scholar
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
Google Scholar
Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nat. Photon. 11, 646–650 (2017).
Google Scholar
Murali, P., Debroy, D. M., Brown, K. R. & Martonosi, M. Architecting noisy intermediate-scale trapped ion quantum computers. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA) 529–542 (IEEE, 2020).
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Google Scholar
Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).
Google Scholar
Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009).
Google Scholar
Kaufmann, H. et al. Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett. 119, 150503 (2017).
Google Scholar
Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).
Google Scholar
Labaziewicz, J. High Fidelity Quantum Gates with Ions in Cryogenic Microfabricated Ion Traps. PhD thesis, MIT (2008); http://web.mit.edu/cua/www/quanta/LabaziewiczThesis.pdf
Maunz, P. L. W. High Optical Access Trap 2.0. Report SAND2016–0796R https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2016/160796r.pdf (Sandia National Laboratories, 2016).
Bowler, R. et al. Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 080502 (2012).
Google Scholar
Kaushal, V. et al. Shuttling-based trapped-ion quantum information processing. AVS Quantum Sci. 2, 014101 (2020).
Google Scholar
Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003).
Google Scholar
Home, J. P. et al. Memory coherence of a sympathetically cooled trapped-ion qubit. Phys. Rev. A 79, 050305 (2009).
Google Scholar
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Palmero, M., Bowler, R., Gaebler, J. P., Leibfried, D. & Muga, J. G. Fast transport of mixed-species ion chains within a paul trap. Phys. Rev. A 90, 053408 (2014).
Google Scholar
Home, J. P. & Steane, A. M. Electrode configurations for fast separation of trapped ions. Quantum Inf. Comput. 6, 289–325 (2006).
Google Scholar
Splatt, F. et al. Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap. New J. Phys. 11, 103008 (2009).
Google Scholar
Haberman, N. Parallel Neighbor Sort (or the Glory of the Induction Principle). CMU Computer Science Report https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258 (Carnegie Mellon University, 1979).
Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).
Google Scholar
Lee, P. J. et al. Phase control of trapped ion quantum gates. J. Opt. B 7, S371–S383 (2005).
Google Scholar
Baldwin, C. H., Bjork, B. J., Gaebler, J. P., Hayes, D. & Stack, D. Subspace benchmarking high-fidelity entangling operations with trapped ions. Phys. Rev. Res. 2, 013317 (2020).
Google Scholar
Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).
Google Scholar
Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).
Google Scholar
Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).
Google Scholar
Monroe, C. et al. Resolved-sideband raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).
Google Scholar
Jordan, E. et al. Near ground-state cooling of two-dimensional trapped-ion crystals with more than 100 ions. Phys. Rev. Lett. 122, 053603 (2019).
Google Scholar
Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 (2012).
Google Scholar
Barrett, M. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).
Google Scholar
Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed species trapped-ion register. Nature 563, 527–531 (2018).
Google Scholar
Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000).
Google Scholar
McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016).
Google Scholar
Farhi, E. & Goldstone, J. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. Preprint at https://arxiv.org/abs/1612.05903 (2016).
Jucevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Preprint at https://arxiv.org/abs/2008.08571 (2020).
van Mourik, M. W. et al. Coherent rotations of qubits within a a surface ion-trap quantum computer. Phys. Rev. A 102, 022611 (2020).
Google Scholar
Mount, E. et al. Single qubit manipulation in a microfabricated surface electrode ion trap. New J. Phys. 15, 093018 (2013).
Google Scholar
Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).
Google Scholar
Kovalev, A. A. & Pryadko, L. P. Quantum kronecker sum-product low-density parity-check codes with finite rate. Phys. Rev. A 88, 012311 (2013).
Google Scholar
Blakestad, R. B. Transport of Trapped-ion Qubits within a Scalable Quantum Processor. PhD thesis, Univ. of Colorado (2010); https://www.nist.gov/system/files/documents/2017/05/09/blakestad2010thesis.pdf.
Biercuk, M. J., Doherty, A. C. & Uys, H. Dynamical decoupling sequence construction as a filter-design problem. J. Phys. B 44, 154002 (2011).
Google Scholar
Harper, R., Flammia, S. T. & Wallman, J. J. Efficient learning of quantum noise. Nat. Phys. 16, 1184–1188 (2020).
Meier, A. M. Randomized Benchmarking of Clifford Operators. PhD thesis, Univ. of Colorado (2006); https://arxiv.org/abs/1811.10040
Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett. 94, 160504 (2005).
Google Scholar
Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249–252 (2002).
Google Scholar
Abraham, H. et al. Qiskit: an Open-Source Framework for Quantum Computing https://zenodo.org/record/2562111#.YC6b8n7LdaR (2019).