Strange IndiaStrange India


  • Science Panel for the Amazon. Amazon Assessment Report 2021 (2021); www.theamazonwewant.org/amazon-assessment-report-2021/.

  • IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://www.ipcc.ch/report/ar6/wg1/#FullReport (Cambridge Univ. Press, 2021).

  • Armstrong McKay, D. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, abn7950 (2022).

    Article 

    Google Scholar 

  • Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Article 
    ADS 

    Google Scholar 

  • Cano, I. M. et al. Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios. Proc. Natl Acad. Sci. USA 119, e2203200119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parry, I. M., Ritchie, P. D. L. & Cox, P. M. Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dynam. 13, 1667–1675 (2022).

    Article 
    ADS 

    Google Scholar 

  • Bromham, L. et al. Global predictors of language endangerment and the future of linguistic diversity. Nat. Ecol. Evol. 6, 163–173 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Indigenous knowledge networks in the face of global change. Proc. Natl Acad. Sci. USA 116, 9913–9918 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31, 902–904 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flores, B. M. & Staal, A. Feedback in tropical forests of the Anthropocene. Global Change Biol. 28, 5041–5061 (2022).

    Article 
    CAS 

    Google Scholar 

  • Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  • Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Holling, C. S. Engineering Resilience versus Ecological Resilience (National Academy Press, 1996).

  • Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204–207 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kukla, T. et al. The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202, 103520 (2021).

    Article 

    Google Scholar 

  • Clement, C. R. et al. Disentangling domestication from food production systems in the neotropics. Quaternary 4, 4 (2021).

    Article 

    Google Scholar 

  • Mayle, F. E. & Power, M. J. Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Phil. Trans. R. Soc. B 363, 1829–1838 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montoya, E. & Rull, V. Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quat. Sci. Rev. 30, 3430–3444 (2011).

    Article 
    ADS 

    Google Scholar 

  • Rull, V., Montoya, E., Vegas-Vilarrúbia, T. & Ballesteros, T. New insights on palaeofires and savannisation in northern South America. Quat. Sci. Rev. 122, 158–165 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rossetti, D. F. et al. Unfolding long-term Late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9, e02457 (2018).

    Article 

    Google Scholar 

  • Prance, G. T. & Schubart, H. O. R. Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia 30, 60 (1978).

    Article 

    Google Scholar 

  • Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    Article 
    ADS 

    Google Scholar 

  • Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marengo, J. A., Jimenez, J. C., Espinoza, J.-C., Cunha, A. P. & Aragão, L. E. O. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Sci. Rep. 12, 457 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

    Article 
    ADS 

    Google Scholar 

  • Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bullock, E. L., Woodcock, C. E., Souza, C. Jr & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Change Biol. 26, 2956–2969 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14, 101 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Phil. Trans. R. Soc. B 373, 20170411 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15, 044024 (2020).

    Article 
    ADS 

    Google Scholar 

  • Alencar, A. A., Brando, P. M., Asner, G. P. & Putz, F. E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 25, 1493–1505 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silvério, D. V. et al. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 17, 045012 (2022).

    Article 
    ADS 

    Google Scholar 

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands: inhibition of Amazon deforestation and fire. Conserv. Biol. 20, 65–73 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Botelho, J., Costa, S. C. P., Ribeiro, J. G. & Souza, C. M. Mapping roads in the Brazilian Amazon with artificial intelligence and Sentinel-2. Remote Sensing 14, 3625 (2022).

    Article 
    ADS 

    Google Scholar 

  • Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

  • Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lapola, D. M., Oyama, M. D. & Nobre, C. A. Exploring the range of climate biome projections for tropical South America: the role of CO2 fertilization and seasonality: future biome distribution in South America. Global Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003357 (2009).

  • Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lammertsma, E. I. et al. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc. Natl Acad. Sci. USA 108, 4035–4040 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).

    Article 
    ADS 

    Google Scholar 

  • Flores, B. M. et al. Soil erosion as a resilience drain in disturbed tropical forests. Plant Soil https://doi.org/10.1007/s11104-019-04097-8 (2020).

  • Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219, 914–931 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Staver, A. C. et al. Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecol. Lett. 23, 99–106 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mattos, C. R. C. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. USA 120, e2301255120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).

    Article 

    Google Scholar 

  • Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexander, C. et al. Linking Indigenous and scientific knowledge of climate change. BioScience 61, 477–484 (2011).

    Article 

    Google Scholar 

  • Ford, J. D. et al. The resilience of Indigenous peoples to environmental change. One Earth 2, 532–543 (2020).

    Article 
    ADS 

    Google Scholar 

  • Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: climate change and Amazon biome shift. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043538 (2010).

  • Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2, 484–487 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).

    Article 
    ADS 

    Google Scholar 

  • Chai, Y. et al. Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. npj Clim. Atmos. Sci. 4, 6 (2021).

    Article 
    ADS 

    Google Scholar 

  • Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burton, C. et al. South American fires and their impacts on ecosystems increase with continued emissions. Clim. Resil. Sustain. 1, e8 (2022).

    Google Scholar 

  • Smith, C. C. et al. Old-growth forest loss and secondary forest recovery across Amazonian countries. Environ. Res. Lett. 16, 085009 (2021).

    Article 
    ADS 

    Google Scholar 

  • Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: Implications for CO2 and H2O fluxes. Glob. Change Biol. 25, 2855–2868 (2019).

    Article 
    ADS 

    Google Scholar 

  • Mesquita, R. C. G., Ickes, K., Ganade, G. & Williamson, G. B. Alternative successional pathways in the Amazon Basin: successional pathways in the Amazon. J. Ecol. 89, 528–537 (2001).

    Article 

    Google Scholar 

  • Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).

    Article 

    Google Scholar 

  • Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. B 363, 1787–1794 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakovac, A. C. C., Bentos, T. V., Mesquita, R. C. G. & Williamson, G. B. Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecol. Divers. 7, 349–358 (2014).

    Article 

    Google Scholar 

  • Mazzochini, G. G. & Camargo, J. L. C. Understory plant interactions along a successional gradient in Central Amazon. Plant Soil https://doi.org/10.1007/s11104-019-04100-2 (2020).

    Article 

    Google Scholar 

  • Schnitzer, S. A. & Bongers, F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms: Increasing lianas in tropical forests. Ecology Letters 14, 397–406 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Tymen, B. et al. Evidence for arrested succession in a liana-infested Amazonian forest. J Ecol 104, 149–159 (2016).

    Article 
    CAS 

    Google Scholar 

  • da Silva, S. S. et al. Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. For. Ecol. Manag. 490, 119139 (2021).

    Article 

    Google Scholar 

  • Carvalho, A. Lde et al. Bamboo-dominated forests of the southwest Amazon: detection, spatial extent, life cycle length and flowering waves. PLoS ONE 8, e54852 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adeney, J. M., Christensen, N. L., Vicentini, A. & Cohn‐Haft, M. White‐sand ecosystems in Amazonia. Biotropica 48, 7–23 (2016).

    Article 

    Google Scholar 

  • Flores, B. M. & Holmgren, M. White-sand savannas expand at the core of the Amazon after forest wildfires. Ecosystems 24, 1624–1637 (2021).

    Article 

    Google Scholar 

  • Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 144, 1419–1429 (2011).

    Article 

    Google Scholar 

  • Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368, 20120427 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rull, V. A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. J. Quat. Sci. 14, 137–152 (1999).

    3.0.CO;2-3″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291099-1417%28199903%2914%3A2%3C137%3A%3AAID-JQS413%3E3.0.CO%3B2-3″ aria-label=”Article reference 98″ data-doi=”10.1002/(SICI)1099-1417(199903)14:2<137::AID-JQS413>3.0.CO;2-3″>Article 

    Google Scholar 

  • Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    Article 
    ADS 

    Google Scholar 

  • Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article 
    ADS 

    Google Scholar 

  • Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain 6, 1331–1342 (2023).

    Article 

    Google Scholar 

  • Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hecht, S. B. From eco-catastrophe to zero deforestation? Interdisciplinarities, politics, environmentalisms and reduced clearing in Amazonia. Envir. Conserv. 39, 4–19 (2012).

    Article 

    Google Scholar 

  • Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hawes, J. E. et al. A large‐scale assessment of plant dispersal mode and seed traits across human‐modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).

    Article 

    Google Scholar 

  • Flores, B. M. & Holmgren, M. Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. J. Ecol. 109, 3473–3486 (2021).

    Article 

    Google Scholar 

  • ter Steege, H. et al. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep. 10, 10130 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poorter, L. et al. Diversity enhances carbon storage in tropical forests: Carbon storage in tropical forests. Global Ecol. Biogeogr. 24, 1314–1328 (2015).

    Article 

    Google Scholar 

  • Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).

    Article 

    Google Scholar 

  • Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article 

    Google Scholar 

  • Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40, 618–629 (2017).

    Article 
    ADS 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Article 

    Google Scholar 

  • Morcote-Ríos, G., Aceituno, F. J., Iriarte, J., Robinson, M. & Chaparro-Cárdenas, J. L. Colonisation and early peopling of the Colombian Amazon during the Late Pleistocene and the Early Holocene: new evidence from La Serranía La Lindosa. Quat. Int. 578, 5–19 (2021).

    Article 

    Google Scholar 

  • Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5, 171 (2018).

    Article 

    Google Scholar 

  • Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B. 282, 20150813 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coelho, S. D. et al. Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS ONE 16, e0257875 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Furquim, L. P. et al. Facing change through diversity: resilience and diversification of plant management strategies during the Mid to Late Holocene Transition at the Monte Castelo shellmound, SW Amazonia. Quaternary 4, 8 (2021).

    Article 

    Google Scholar 

  • Schmidt, M. V. C. et al. Indigenous knowledge and forest succession management in the Brazilian Amazon: contributions to reforestation of degraded areas. Front. For. Glob. Change 4, 605925 (2021).

    Article 

    Google Scholar 

  • Tomioka Nilsson, M. S. & Fearnside, P. M. Yanomami mobility and its effects on the forest landscape. Hum. Ecol. 39, 235–256 (2011).

    Article 

    Google Scholar 

  • Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DiMiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD44B.006 (2015).

  • Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).

    Article 
    ADS 

    Google Scholar 

  • Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: is the CART pulling the horse? – a comment. Global Ecol. Biogeogr. 24, 985–987 (2015).

    Article 

    Google Scholar 

  • Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2, 150066 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article 

    Google Scholar 

  • Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past 6, 77–82 (2010).

    Article 

    Google Scholar 

  • Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC Taylor & Francis Group, 1998).

  • Tuinenburg, O. A. & Staal, A. Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrol. Earth Syst. Sci. 24, 2419–2435 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).

    Article 
    ADS 

    Google Scholar 

  • Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221, 1457–1465 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Mattos, C. R. C. et al. Rainfall and topographic position determine tree embolism resistance in Amazônia and Cerrado sites. Environ. Res. Lett. 18, 114009 (2023).

    Article 
    ADS 

    Google Scholar 

  • NASA JPL. NASA Shuttle Radar Topography Mission Global 1 arc second. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

  • Hess, L. L. et al. Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35, 745–756 (2015).

    Article 

    Google Scholar 

  • Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World. (SIL International, 2021).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *