Science Panel for the Amazon. Amazon Assessment Report 2021 (2021); www.theamazonwewant.org/amazon-assessment-report-2021/.
IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://www.ipcc.ch/report/ar6/wg1/#FullReport (Cambridge Univ. Press, 2021).
Armstrong McKay, D. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, abn7950 (2022).
Google Scholar
Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).
Google Scholar
Cano, I. M. et al. Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios. Proc. Natl Acad. Sci. USA 119, e2203200119 (2022).
Google Scholar
Parry, I. M., Ritchie, P. D. L. & Cox, P. M. Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dynam. 13, 1667–1675 (2022).
Google Scholar
Bromham, L. et al. Global predictors of language endangerment and the future of linguistic diversity. Nat. Ecol. Evol. 6, 163–173 (2022).
Google Scholar
Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).
Google Scholar
Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Indigenous knowledge networks in the face of global change. Proc. Natl Acad. Sci. USA 116, 9913–9918 (2019).
Google Scholar
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
Google Scholar
Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
Google Scholar
Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).
Google Scholar
van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31, 902–904 (2016).
Google Scholar
Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).
Google Scholar
Flores, B. M. & Staal, A. Feedback in tropical forests of the Anthropocene. Global Change Biol. 28, 5041–5061 (2022).
Google Scholar
Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).
Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).
Google Scholar
Holling, C. S. Engineering Resilience versus Ecological Resilience (National Academy Press, 1996).
Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).
Google Scholar
Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541, 204–207 (2017).
Google Scholar
Kukla, T. et al. The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202, 103520 (2021).
Google Scholar
Clement, C. R. et al. Disentangling domestication from food production systems in the neotropics. Quaternary 4, 4 (2021).
Google Scholar
Mayle, F. E. & Power, M. J. Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Phil. Trans. R. Soc. B 363, 1829–1838 (2008).
Google Scholar
Montoya, E. & Rull, V. Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quat. Sci. Rev. 30, 3430–3444 (2011).
Google Scholar
Rull, V., Montoya, E., Vegas-Vilarrúbia, T. & Ballesteros, T. New insights on palaeofires and savannisation in northern South America. Quat. Sci. Rev. 122, 158–165 (2015).
Google Scholar
Rossetti, D. F. et al. Unfolding long-term Late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9, e02457 (2018).
Google Scholar
Prance, G. T. & Schubart, H. O. R. Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia 30, 60 (1978).
Google Scholar
Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).
Google Scholar
van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).
Google Scholar
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
Google Scholar
Marengo, J. A., Jimenez, J. C., Espinoza, J.-C., Cunha, A. P. & Aragão, L. E. O. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Sci. Rep. 12, 457 (2022).
Google Scholar
Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, 111–117 (2023).
Google Scholar
Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).
Google Scholar
Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).
Google Scholar
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).
Google Scholar
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
Google Scholar
Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).
Google Scholar
Bullock, E. L., Woodcock, C. E., Souza, C. Jr & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Change Biol. 26, 2956–2969 (2020).
Google Scholar
Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).
Google Scholar
Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14, 101 (2023).
Google Scholar
Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Phil. Trans. R. Soc. B 373, 20170411 (2018).
Google Scholar
Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15, 044024 (2020).
Google Scholar
Alencar, A. A., Brando, P. M., Asner, G. P. & Putz, F. E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 25, 1493–1505 (2015).
Google Scholar
Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Google Scholar
Silvério, D. V. et al. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 17, 045012 (2022).
Google Scholar
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Google Scholar
Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
Google Scholar
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
Google Scholar
Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands: inhibition of Amazon deforestation and fire. Conserv. Biol. 20, 65–73 (2006).
Google Scholar
Botelho, J., Costa, S. C. P., Ribeiro, J. G. & Souza, C. M. Mapping roads in the Brazilian Amazon with artificial intelligence and Sentinel-2. Remote Sensing 14, 3625 (2022).
Google Scholar
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).
Google Scholar
Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).
Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).
Google Scholar
Lapola, D. M., Oyama, M. D. & Nobre, C. A. Exploring the range of climate biome projections for tropical South America: the role of CO2 fertilization and seasonality: future biome distribution in South America. Global Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003357 (2009).
Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).
Google Scholar
Lammertsma, E. I. et al. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc. Natl Acad. Sci. USA 108, 4035–4040 (2011).
Google Scholar
Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).
Google Scholar
Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).
Google Scholar
Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).
Google Scholar
Flores, B. M. et al. Soil erosion as a resilience drain in disturbed tropical forests. Plant Soil https://doi.org/10.1007/s11104-019-04097-8 (2020).
Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219, 914–931 (2018).
Google Scholar
Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).
Google Scholar
Staver, A. C. et al. Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecol. Lett. 23, 99–106 (2020).
Google Scholar
Mattos, C. R. C. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. USA 120, e2301255120 (2023).
Google Scholar
Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114, 4442–4446 (2017).
Google Scholar
Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2016).
Google Scholar
Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).
Google Scholar
Alexander, C. et al. Linking Indigenous and scientific knowledge of climate change. BioScience 61, 477–484 (2011).
Google Scholar
Ford, J. D. et al. The resilience of Indigenous peoples to environmental change. One Earth 2, 532–543 (2020).
Google Scholar
Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).
Google Scholar
Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).
Google Scholar
Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: climate change and Amazon biome shift. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043538 (2010).
Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2, 484–487 (2009).
Google Scholar
Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).
Google Scholar
Chai, Y. et al. Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. npj Clim. Atmos. Sci. 4, 6 (2021).
Google Scholar
Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
Google Scholar
Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).
Google Scholar
Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).
Google Scholar
Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
Google Scholar
Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).
Google Scholar
Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).
Google Scholar
Burton, C. et al. South American fires and their impacts on ecosystems increase with continued emissions. Clim. Resil. Sustain. 1, e8 (2022).
Smith, C. C. et al. Old-growth forest loss and secondary forest recovery across Amazonian countries. Environ. Res. Lett. 16, 085009 (2021).
Google Scholar
Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: Implications for CO2 and H2O fluxes. Glob. Change Biol. 25, 2855–2868 (2019).
Google Scholar
Mesquita, R. C. G., Ickes, K., Ganade, G. & Williamson, G. B. Alternative successional pathways in the Amazon Basin: successional pathways in the Amazon. J. Ecol. 89, 528–537 (2001).
Google Scholar
Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).
Google Scholar
Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. B 363, 1787–1794 (2008).
Google Scholar
Jakovac, A. C. C., Bentos, T. V., Mesquita, R. C. G. & Williamson, G. B. Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecol. Divers. 7, 349–358 (2014).
Google Scholar
Mazzochini, G. G. & Camargo, J. L. C. Understory plant interactions along a successional gradient in Central Amazon. Plant Soil https://doi.org/10.1007/s11104-019-04100-2 (2020).
Google Scholar
Schnitzer, S. A. & Bongers, F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms: Increasing lianas in tropical forests. Ecology Letters 14, 397–406 (2011).
Google Scholar
Tymen, B. et al. Evidence for arrested succession in a liana-infested Amazonian forest. J Ecol 104, 149–159 (2016).
Google Scholar
da Silva, S. S. et al. Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. For. Ecol. Manag. 490, 119139 (2021).
Google Scholar
Carvalho, A. Lde et al. Bamboo-dominated forests of the southwest Amazon: detection, spatial extent, life cycle length and flowering waves. PLoS ONE 8, e54852 (2013).
Google Scholar
Adeney, J. M., Christensen, N. L., Vicentini, A. & Cohn‐Haft, M. White‐sand ecosystems in Amazonia. Biotropica 48, 7–23 (2016).
Google Scholar
Flores, B. M. & Holmgren, M. White-sand savannas expand at the core of the Amazon after forest wildfires. Ecosystems 24, 1624–1637 (2021).
Google Scholar
Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 144, 1419–1429 (2011).
Google Scholar
Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368, 20120427 (2013).
Google Scholar
Rull, V. A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. J. Quat. Sci. 14, 137–152 (1999).
Google Scholar
Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).
Google Scholar
Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).
Google Scholar
Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain 6, 1331–1342 (2023).
Google Scholar
Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).
Google Scholar
Hecht, S. B. From eco-catastrophe to zero deforestation? Interdisciplinarities, politics, environmentalisms and reduced clearing in Amazonia. Envir. Conserv. 39, 4–19 (2012).
Google Scholar
Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).
Google Scholar
Hawes, J. E. et al. A large‐scale assessment of plant dispersal mode and seed traits across human‐modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).
Google Scholar
Flores, B. M. & Holmgren, M. Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. J. Ecol. 109, 3473–3486 (2021).
Google Scholar
ter Steege, H. et al. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep. 10, 10130 (2020).
Google Scholar
Poorter, L. et al. Diversity enhances carbon storage in tropical forests: Carbon storage in tropical forests. Global Ecol. Biogeogr. 24, 1314–1328 (2015).
Google Scholar
Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).
Google Scholar
Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).
Google Scholar
Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40, 618–629 (2017).
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Google Scholar
Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
Google Scholar
Morcote-Ríos, G., Aceituno, F. J., Iriarte, J., Robinson, M. & Chaparro-Cárdenas, J. L. Colonisation and early peopling of the Colombian Amazon during the Late Pleistocene and the Early Holocene: new evidence from La Serranía La Lindosa. Quat. Int. 578, 5–19 (2021).
Google Scholar
Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5, 171 (2018).
Google Scholar
Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B. 282, 20150813 (2015).
Google Scholar
Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925–931 (2017).
Google Scholar
Coelho, S. D. et al. Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS ONE 16, e0257875 (2021).
Google Scholar
de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).
Google Scholar
Furquim, L. P. et al. Facing change through diversity: resilience and diversification of plant management strategies during the Mid to Late Holocene Transition at the Monte Castelo shellmound, SW Amazonia. Quaternary 4, 8 (2021).
Google Scholar
Schmidt, M. V. C. et al. Indigenous knowledge and forest succession management in the Brazilian Amazon: contributions to reforestation of degraded areas. Front. For. Glob. Change 4, 605925 (2021).
Google Scholar
Tomioka Nilsson, M. S. & Fearnside, P. M. Yanomami mobility and its effects on the forest landscape. Hum. Ecol. 39, 235–256 (2011).
Google Scholar
Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).
Google Scholar
DiMiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD44B.006 (2015).
Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).
Google Scholar
Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: is the CART pulling the horse? – a comment. Global Ecol. Biogeogr. 24, 985–987 (2015).
Google Scholar
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2, 150066 (2015).
Google Scholar
Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).
Google Scholar
Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).
Google Scholar
Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past 6, 77–82 (2010).
Google Scholar
Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC Taylor & Francis Group, 1998).
Tuinenburg, O. A. & Staal, A. Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrol. Earth Syst. Sci. 24, 2419–2435 (2020).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).
Google Scholar
Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221, 1457–1465 (2019).
Google Scholar
Mattos, C. R. C. et al. Rainfall and topographic position determine tree embolism resistance in Amazônia and Cerrado sites. Environ. Res. Lett. 18, 114009 (2023).
Google Scholar
NASA JPL. NASA Shuttle Radar Topography Mission Global 1 arc second. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).
Hess, L. L. et al. Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35, 745–756 (2015).
Google Scholar
Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World. (SIL International, 2021).