Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).
Google Scholar
Heravi, M. M. & Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 10, 44247–44311 (2020).
Google Scholar
Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).
Google Scholar
Burch, J. D. et al. Property- and structure-guided discovery of a tetrahydroindazole series of interleukin-2 inducible T-cell kinase inhibitors. J. Med. Chem. 57, 5714–5727 (2014).
Google Scholar
Zak, M. et al. Minimizing CYP2C9 inhibition of exposed-pyridine NAMPT (nicotinamide phosphoribosyltransferase) inhibitors. J. Med. Chem. 59, 8345–8368 (2016).
Google Scholar
Barsanti, P. A. et al. Structure-based drug design of novel potent and selective tetrahydropyrazolo[1,5-a]pyrazines as ATR inhibitors. ACS Med. Chem. Lett. 6, 37–41 (2015).
Google Scholar
Ghera, E., Ben David, Y. & Rapoport, H. Synthesis of functionalized quinoline derivatives by annulation of pyridines. J. Org. Chem. 46, 2059–2065 (1981).
Google Scholar
Lennox, J. R., Turner, S. C. & Rapoport, H. Enantiospecific synthesis of annulated nicotine analogues from d-glutamic acid. 7-Azabicyclo[2.2.1]heptano[2.3-c]pyridines. J. Org. Chem. 66, 7078–7083 (2001).
Google Scholar
Skupinska, K. A., McEachern, E. J., Skerlj, R. T. & Bridger, G. J. Concise preparation of amino-5,6,7,8-tetrahydroquinolines and amino-5,6,7,8-tetrahydroisoquinolines via catalytic hydrogenation of acetamidoquinolines and acetamidoisoquinolines. J. Org. Chem. 67, 7890–7893 (2002).
Google Scholar
Twigg, D. G. et al. Partially saturated bicyclic heteroaromatics as an sp3-enriched fragment collection. Angew. Chem. Int. Ed. 55, 12479–12483 (2016).
Google Scholar
Cox, B., Booker-Milburn, K. I., Elliott, L. D., Robertson-Ralph, M. & Zdorichenko, V. Escaping from Flatland: [2+2] photocycloaddition; conformationally constrained sp3-rich scaffolds for lead generation. ACS Med. Chem. Lett. 10, 1512–1517 (2019).
Google Scholar
Cox, B. et al. Escaping from Flatland: substituted bridged pyrrolidine fragments with inherent three-dimensional character. ACS Med. Chem. Lett. 11, 1185–1190 (2020).
Google Scholar
Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).
Google Scholar
Lovering, F., Bikker, J. & Humblet, C. Escape from Flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).
Google Scholar
Leeson, P. D. Impact of physicochemical properties on dose and hepatotoxicity of oral drugs. Chem. Res. Toxicol. 31, 494–505 (2018).
Google Scholar
Glase, S. A., Corbin, A. E., Pugsley, T. A., Heffner, T. G. & Wise, L. D. Synthesis and dopaminergic activity of pyridine analogs of 5-hydroxy-2-(di-N-propylamino)tetralin. J. Med. Chem. 38, 3132–3137 (1995).
Google Scholar
Gündisch, D. et al. Syntheses and evaluation of pyridazine and pyrimidine containing bioisosteres of (±)-pyrido[3.4-b]homotropane and pyrido-[3.4-b]tropane as novel nAChR ligands. Bioorg. Med. Chem. 10, 1–9 (2002).
Google Scholar
Burgin, R. N., Jones, S. & Tarbit, B. Scope and limitations of the Minisci reaction for the synthesis of aza-heterocycles. Tetrahedron Lett. 50, 6772–6774 (2009).
Google Scholar
Luise, N. & Wyatt, P. G. Generation of polar semi-saturated bicyclic pyrazoles for fragment-based drug-discovery campaigns. Chem. Eur. J. 24, 10443–10451 (2018).
Google Scholar
Srikrishna, A., Jagadeeswar Reddy, T. & Viswajanani, R. Reduction of quinolines to 1,2,3,4-tetrahydro derivatives employing a combination of NaCNBH3 and BF3.OEt2. Tetrahedron 52, 1631–1636 (1996).
Google Scholar
Hu, C. et al. Uncanonical semireduction of quinolines and isoquinolines via regioselective HAT-promoted hydrosilylation. J. Am. Chem. Soc. 145, 25–31 (2023).
Google Scholar
Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. 41, 1668–1698 (2002).
Google Scholar
Molander, G. A. Diverse methods for medium ring synthesis. Acc. Chem. Res. 31, 603–609 (1998).
Google Scholar
Poplata, S., Tröster, A., Zou, Y.-Q. & Bach, T. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions. Chem. Rev. 116, 9748–9815 (2016).
Google Scholar
Joule, J. A. Heterocyclic Chemistry (Van Nostrand Reinhold Co., 2000).
Harvey, F. M. & Bochet, C. G. Photochemical methods in metathesis reactions. Org. Biomol. Chem. 18, 8034–8057 (2020).
Google Scholar
Floreancig, P. E. Handbook of cyclization reactions, vols. 1–2. J. Am. Chem. Soc. 132, 6865–6866 (2010).
Google Scholar
Theunissen, C., Ashley, M. A. & Rovis, T. Visible-light-controlled ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 141, 6791–6796 (2019).
Google Scholar
Groso, E. J. & Schindler, C. S. Recent advances in the application of ring-closing metathesis for the synthesis of unsaturated nitrogen heterocycles. Synthesis 51, 1100–1114 (2019).
Google Scholar
Sherwood, T. C. et al. Decarboxylative intramolecular arene alkylation using N-(acyloxy)phthalimides, an organic photocatalyst, and visible light. J. Org. Chem. 84, 8360–8379 (2019).
Google Scholar
Bordi, S. & Starr, J. T. Hydropyridylation of olefins by intramolecular Minisci reaction. Org. Lett. 19, 2290–2293 (2017).
Google Scholar
Troyano, F. J. A., Anwar, K., Mohr, F., Robert, G. & Gómez-Suárez, A. Deoxygenative intramolecular Minisci-type reaction to access fused heterocyclic scaffolds. Eur. J. Org. Chem. 26, e202201176 (2023).
Google Scholar
Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).
Google Scholar
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
Google Scholar
Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2, 293–301 (2016).
Google Scholar
Minisci, F., Bernardi, R., Bertini, F., Galli, R. & Perchinummo, M. Nucleophilic character of alkyl radicals—VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron 27, 3575–3579 (1971).
Google Scholar
Jin, J. & MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C–H functionalization. Nature 525, 87–90 (2015).
Google Scholar
Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).
Google Scholar
Huang, H.-M., Bellotti, P., Ma, J., Dalton, T. & Glorius, F. Bifunctional reagents in organic synthesis. Nat. Rev. Chem. 5, 301–321 (2021).
Google Scholar
Zhang, P., Le, C. & MacMillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).
Google Scholar
Sakai, H. A., Liu, W., Le, C. & MacMillan, D. W. C. Cross-electrophile coupling of unactivated alkyl chlorides. J. Am. Chem. Soc. 142, 11691–11697 (2020).
Google Scholar
Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).
Google Scholar
Connett, G. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. Drug Des. Devel. Ther. 13, 2405–2412 (2019).
Google Scholar
Dreher, S. D. & Krska, S. W. Chemistry Informer Libraries: conception, early experience, and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).
Google Scholar
Ketron, A. C., Denny, W. A., Graves, D. E. & Osheroff, N. Amsacrine as a topoisomerase II poison: importance of drug–DNA interactions. Biochemistry 51, 1730–1739 (2012).
Google Scholar