Strange India All Strange Things About India and world


  • 1.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2019).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Wong, D. et al. Cascade of transitions between the correlated electronic states of magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Bistritzer, R. & MacDonald, A. H. Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84, 035440 (2011).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Brihuega, I. et al. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019); author correction 15, 1205 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Jung, S. et al. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat. Phys. 7, 245–251 (2011).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry broken Chern insulators in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2007.06115 (2020).

  • 27.

    Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators and topological flat-bands in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2007.03735 (2020).

  • 28.

    Das, I. et al. Symmetry broken Chern insulators and magic series of Rashba-like Landau level crossings in magic angle bilayer graphene. Preprint at https://arxiv.org/abs/2007.13390 (2020).

  • 29.

    Wannier, G. H. A result not dependent on rationality for Bloch electrons in a magnetic field. Phys. Stat. Sol. B 88, 757–765 (1978).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Guinea, F. & Walet, N. R. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl Acad. Sci. USA 115, 13174–13179 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Goodwin, Z. A. H., Vitale, V., Liang, X., Mostofi, A. A. & Lischner, J. Hartree theory calculations of quasiparticle properties in twisted bilayer graphene. Electron. Struct. 2, 034001 (2020).

  • 32.

    Xie, M. & MacDonald, A. H. Nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Hejazi, K., Liu, C. & Balents, L. Landau levels in twisted bilayer graphene and semiclassical orbits. Phys. Rev. B 100, 035115 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Zhang, Y.-H., Po, H. C. & Senthil, T. Landau level degeneracy in twisted bilayer graphene: role of symmetry breaking. Phys. Rev. B 100, 125104 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Carr, S., Fang, S., Po, H. C., Vishwanath, A. & Kaxiras, E. Derivation of Wannier orbitals and minimal-basis tight-binding Hamiltonians for twisted bilayer graphene: first-principles approach. Phys. Rev. Res. 1, 033072 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

  • 39.

    Walkup, D. et al. Tuning single-electron charging and interactions between compressible Landau level islands in graphene. Phys. Rev. B 101, 035428 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Wang, T., Bultinck, N. & Zaletel, M. P. Flat band topology of magic angle graphene on a transition metal dichalcogenide. Phys. Rev. B 102, 235146 (2020).

  • 41.

    Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Hatsugai, Y., Fukui, T. & Aoki, H. Topological aspects of graphene. Eur. Phys. J. Spec. Top. 148, 133–141 (2007).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *