Waser, R. (ed.) Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 3rd edn (Wiley-VCH, 2012).
Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Google Scholar
Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).
Google Scholar
Giba, A. E. et al. Spin injection and relaxation in p-doped (In,Ga)As/GaAs quantum-dot spin light-emitting diodes at zero magnetic field. Phys. Rev. Appl. 14, 034017 (2020).
Google Scholar
Liang, S. H. et al. Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector. Phys. Rev. B 90, 085310 (2014).
Google Scholar
Gerhardt, N. C. et al. Electron spin injection into GaAs from ferromagnetic contacts in remanence. Appl. Phys. Lett. 87, 032502 (2005).
Google Scholar
Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Google Scholar
Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).
Google Scholar
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Google Scholar
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Google Scholar
Mishra, R., Kim, T., Park, J. & Yang, H. Shared-write-channel-based device for high-density spin-orbit-torque magnetic random-access memory. Phys. Rev. Appl. 15, 024063 (2021).
Google Scholar
Lindemann, M. et al. Ultrafast spin-lasers. Nature 568, 212–215 (2019).
Google Scholar
Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017).
Google Scholar
Sandvine. The Global Internet Phenomena Report: COVID-19 Spotlight https://go.nature.com/49HrzWl (2020).
Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).
Google Scholar
Dery, H. et al. Spintronic nanoelectronics based on magneto-logic gates. IEEE Trans. Electron. Dev. 59, 259–262 (2012).
Google Scholar
Vagionas, C. et al. Optical memory architectures for fast routing address look-up (AL) table operation. J. Phys. Photon. 1, 044005 (2019).
Google Scholar
Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).
Google Scholar
Zhan, X. et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater. 33, 202104418 (2021).
Google Scholar
Nishizawa, N. & Munekata, H. Lateral-type spin-photonics devices: development and applications. Micromachines 12, 644–675 (2021).
Google Scholar
Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70–73 (2017).
Google Scholar
Žutić, I. et al. Spin-lasers: spintronics beyond magnetoresistance. Solid State Commun. 316–317, 113949 (2020).
Google Scholar
Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, I. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).
Google Scholar
Marin, J. F. G. et al. Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun. 13, 4884 (2022).
Google Scholar
Nishizawa, N., Nishibayashi, K. & Munekata, H. A spin light emitting diode incorporating ability of electrical helicity switching. Appl. Phys. Lett. 104, 111102 (2014).
Google Scholar
Yokota, N., Nisaka, K., Yasaka, H. & Ikeda, K. Spin polarization modulation for high-speed vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 113, 171102 (2018).
Google Scholar
Sinova, J. & Žutić, I. New moves of the spintronics tango. Nat. Mater. 11, 368–371 (2012).
Google Scholar
Holub, M., Shin, J., Saha, D. & Bhattacharya, P. Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98, 146603 (2007).
Google Scholar
Tsymbal, E. Y. & Žutić, I. Spintronics Handbook: Spin Transport and Magnetism 2nd edn (CRC Press, Boca Raton, FL, 2019).
Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).
Google Scholar
Li, H. et al. Field-free deterministic magnetization switching with ultralow current density in epitaxial Au/Fe4N bilayer films. ACS Appl. Mater. Interfaces 11, 16965–16971 (2019).
Google Scholar
van den Brink, A. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).
Google Scholar
Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).
Google Scholar
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022).
Google Scholar
Fang, C. et al. Observation of the fluctuation spin Hall effect in a low-resistivity antiferromagnet. Nano Lett. 23, 11485–11492 (2023).
Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).
Google Scholar
Xie, H. et al. Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures. Chin. Phys. 32, 037502 (2023).
Google Scholar
Kumar, S. & Kumar, S. Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures. Nat. Commun. 14, 8185 (2023).
Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013).
Google Scholar
Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).
Google Scholar
Rahaman, S. Z. et al. Pulse-width and temperature effect on the switching behavior of an etch-stop-on-MgO-barrier spin-orbit torque MRAM cell. IEEE Electron Device Lett. 39, 1306–1309 (2018).
Google Scholar
Zhang, X., Vernier, N., Zhao, W., Vila, L. & Ravelosona, D. Extrinsic pinning of magnetic domain walls in CoFeB-MgO nanowires with perpendicular anisotropy. AIP Adv. 8, 056307 (2018).
Google Scholar
Barate, P. et al. Bias dependence of the electrical spin injection into GaAs from Co–Fe–B/MgO injectors with different MgO growth processes. Phys. Rev. Appl. 8, 054027 (2017).
Google Scholar
Iba, S., Koh, S., Ikeda, K. & Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 98, 081113 (2011).
Google Scholar
Frougier, J. et al. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers. Appl. Phys. Lett. 103, 252402 (2013).
Google Scholar
Diamanti, E., Lo, H.-K., Qi, B. & Yuan, Z. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016).
Google Scholar
Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).
Google Scholar
Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).
Google Scholar
Belhadj, T. et al. Controlling the polarization eigenstate of a quantum dot exciton with light. Phys. Rev. Lett. 103, 086601 (2009).
Google Scholar
Braun, P. F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).
Google Scholar
Tao, B. et al. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence. Nanoscale 10, 10213–10220 (2018).
Google Scholar
Cadiz, F. et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 18, 2381–2386 (2018).
Google Scholar
Lu, Y. et al. Depth analysis of boron diffusion in MgO/CoFeB bilayer by X-ray photoelectron spectroscopy. J. Appl. Phys. 108, 043703 (2010).
Google Scholar
Liu, B. et al. Spin injection probed by combined optical and electrical techniques in spin-LED. Phys. Status. Solidi. (c) 1, 475–478 (2004).
Google Scholar
Lee, K.-M., Choi, J. W., Sok, J. & Min, B.-C. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO. AIP Adv. 7, 065107 (2017).
Google Scholar
Huang, S. X., Chen, T. Y. & Chien, C. L. Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection. Appl. Phys. Lett. 92, 242509 (2008).
Google Scholar
Barate, P. et al. Electrical spin injection into InGaAs/GaAs quantum wells: A comparison between MgO tunnel barriers grown by sputtering and molecular beam epitaxy methods. Appl. Phys. Lett. 105, 012404 (2014).
Google Scholar
Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).
Google Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).
Google Scholar
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).
Google Scholar
Lu, Y. et al. Spin-orbit coupling effect by minority interface resonance states in single-crystal magnetic tunnel junctions. Phys. Rev. B 86, 184420 (2012).
Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).
Google Scholar