Strange IndiaStrange India


  • Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sannasiddappa, T. H., Lund, P. A. & Clarke, S. R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol. 8, 1581 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hofmann, A. F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159, 2647–2658 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russell, D. W. The enzymes, regulation and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, D. J. & Wang, L. in Bile Acids and Their Receptors Vol. 256 (eds Fiorucci, S. & Distrutti, E.) 51–72 (Springer, 2019).

  • Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

    Article 
    CAS 

    Google Scholar 

  • Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinn, R. A. et al. Global chemical effects of the microbiome include new bile–acid conjugations. Nature 579, 123–129 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucas, L. N. et al. Dominant bacterial phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems 6, e00805–e00821 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. W. et al. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut Microbes 14, 2132903 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gopal-Srivastava, R. & Hylemon, P. B. Purification and characterization of bile salt hydrolase from Clostridium perfringens. J. Lipid Res. 29, 1079–1085 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lodola, A. et al. A catalytic mechanism for cysteine N-terminal nucleophile hydrolases, as revealed by free energy simulations. PLoS ONE 7, e32397 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coleman, J. P. & Hudson, L. L. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61, 2514–2520 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rossocha, M., Schultz-Heienbrok, R., Von Moeller, H., Coleman, J. P. & Saenger, W. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry 44, 5739–5748 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hinberg, I. & Laidler, K. J. The kinetics of reactions catalyzed by alkaline phosphatase: the effects of added nucleophiles. Can. J. Biochem. 50, 1360–1368 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rossocha, M., Schultz-Heienbrok, R., Von Moeller, H., Coleman, J. P. & Saenger, W. Crystal structure of conjugated bile acid hydrolase from Clostridium perfringens in complex with reaction products taurine and deoxycholate. Biochemistry 44, 5739–5748 (2005).

  • Foley, M. H., O’Flaherty, S., Barrangou, R. & Theriot, C. M. Bile salt hydrolases: gatekeepers of bile acid metabolism and host–microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 15, e1007581 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karlov, D. S. et al. Characterization of the mechanism of bile salt hydrolase substrate specificity by experimental and computational analyses. Structure 31, 629–638 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernstein, H., Bernstein, C., Payne, C. M., Dvorakova, K. & Garewal, H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589, 47–65 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernstein, C. et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch. Toxicol. 85, 863–871 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, H. et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int. J. Cancer 140, 2545–2556 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kurdi, P., Kawanishi, K., Mizutani, K. & Yokota, A. Mechanism of growth inhibition by free bile acids in Lactobacilli and Bifidobacteria. J. Bacteriol. 188, 1979–1986 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamilton, J. P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Northfield, T. C. & McColl, I. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut 14, 513–518 (1973).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zapata, R. C., Zhang, D., Chaudry, B. & Osborn, O. Self-Administration of drugs in mouse models of feeding and obesity. J. Vis. Exp. https://doi.org/10.3791/62775 (2021).

  • Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature https://doi.org/10.1038/s41586-023-06906-8 (2023).

  • Huijghebaert, S. M. & Hofmann, A. F. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human faecal cultures. J. Lipid Res. 27, 742–752 (1988).

    Article 

    Google Scholar 

  • Huijghebaert, S. M. & Hofmann, A. F. Pancreatic carboxypeptidase hydrolysis of bile acid–amino acid conjugates: selective resistance of glycine and taurine amidates. Gastroenterology 90, 306–315 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foley, M. H. et al. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat. Microbiol. 8, 611–628 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Z. & Lee, B. H. Bile salt hydrolases: structure and function, substrate preference and inhibitor development. Protein Sci. 27, 1742–1754 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maurer, J. M. et al. Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of ColoPulse Tablets. PLoS ONE 10, e0129076 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, D. F. et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29, 1035–1041 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, B., Park, D., Hahn, Y. & Jeon, C. O. Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes 11, 1300–1313 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karlov, D. S. et al. Structure of Lactobacillus salivarius (Ls) bile salt hydrolase(BSH) in complex with taurocholate (TCA) (Worldwide Protein Data Bank, 2023); https://doi.org/10.2210/pdb8blt/pdb.

  • Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular framework for processing, visualizing and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Sprouffske, K. & Wagner, A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172 (2016).

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article 

    Google Scholar 

  • Papadopoulos, J. S. & Agarwala, R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073–1079 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sehnal, D. et al. MolViewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431–W437 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

  • Amnon, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–16 (2017).

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yilmaz, P. et al. The SILVA and ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Breiman, L., Cutler, A., Liaw, A. & Wiener, M. randomForest: Breiman and Cutler’s Random Forests for classification and regression. R package v. 4.7-1.1 (2022).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • Potential Candidates for Bariatric Surgery (National Institute of Diabetes and Digestive and Kidney Diseases, 2020); www.niddk.nih.gov/health-information/weight-management/bariatric-surgery/potential-candidates.



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *