Strange IndiaStrange India


  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar 

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022).

    Article 

    Google Scholar 

  • Morvan, A. et al. Phase transition in random circuit sampling. Preprint at https://arxiv.org/abs/2304.11119 (2023).

  • Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article 

    Google Scholar 

  • Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).

  • Ghosh, S., Deshpande, A., Hangleiter, D., Gorshkov, A. V. & Fefferman, B. Complexity phase transitions generated by entanglement. Phys. Rev. Lett. 131, 030601 (2023).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Kechedzhi, K. et al. Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments. Future Gener. Comput. Syst. 153, 431–441 (2024).

    Article 

    Google Scholar 

  • Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Modern Phys. 94, 015004 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Hauru, M. et al. Simulation of quantum physics with tensor processing units: brute-force computation of ground states and time evolution. Preprint at https://arxiv.org/abs/2111.10466 (2021).

  • Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).

    Article 
    CAS 

    Google Scholar 

  • Choi, J. et al. Preparing random states and benchmarking with many-body quantum chaos. Nature 613, 468–473 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mark, D. K., Choi, J., Shaw, A. L., Endres, M. & Choi, S. Benchmarking quantum simulators using ergodic quantum dynamics. Phys. Rev. Lett. 131, 110601 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Proctor, T., Rudinger, K., Young, K., Nielsen, E. & Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 18, 75–79 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).

    Article 
    CAS 

    Google Scholar 

  • Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar 

  • Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).

    Article 

    Google Scholar 

  • Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaw, A. L. et al. Dark-state enhanced loading of an optical tweezer array. Phys. Rev. Lett. 130, 193402 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bridgeman, J. C. & Chubb, C. T. Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A Math. Theor. 50, 223001 (2017).

    Article 
    MathSciNet 

    Google Scholar 

  • Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers? Phys. Rev. X 10, 041038 (2020).

    CAS 

    Google Scholar 

  • Moses, S. A. et al. A race race track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  • Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum simulator based on a photonic-bandgap metamaterial. Science 379, 278–283 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haah, J., Hastings, M. B., Kothari, R. & Low, G. H. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. SIAM J. Comput. 52, 6 (2021).

    MathSciNet 

    Google Scholar 

  • Tran, M. C. et al. Locality and digital quantum simulation of power-law interactions. Phys. Rev. X 9, 031006 (2019).

    CAS 

    Google Scholar 

  • Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalzell, A. M., Hunter-Jones, N., & Brandão, G. S. L. Random quantum circuits transform local noise into global white noise. Preprint at https://arxiv.org/abs/2111.14907 (2021).

  • Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M. & Suganthan, P. N. Ensemble deep learning: a review. Eng. Appl. Artificial Intell. 115, 105151 (2022).

    Article 

    Google Scholar 

  • Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Linke, N. M. et al. Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer. Phys. Rev. A 98, 052334 (2018).

    Article 
    CAS 

    Google Scholar 

  • Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Plenio, M. B. Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • O’Donnell, R. & Wright, J. Efficient quantum tomography. In Proc. Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16 899–912 (Association for Computing Machinery, 2016).

  • Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inform. Theory 63, 5628 (2017).

    MathSciNet 

    Google Scholar 

  • Elben, A. et al. Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mooney, G. J., White, G. A. L., Hill, C. D. & Hollenberg, L. C. L. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quant. Technol. 4, 2100061 (2021).

    Article 

    Google Scholar 

  • Lee, S., Chi, D. P., Oh, S. D. & Kim, J. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003).

    Article 

    Google Scholar 

  • Bhosale, U. T., Tomsovic, S. & Lakshminarayan, A. Entanglement between two subsystems, the Wigner semicircle and extreme-value statistics. Phys. Rev. A 85, 062331 (2012).

    Article 

    Google Scholar 

  • Datta, A. Negativity of random pure states. Phys. Rev. A 81, 052312 (2010).

    Article 
    MathSciNet 

    Google Scholar 

  • Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004).

    Article 

    Google Scholar 

  • Ganahl, M. et al. Density matrix renormalization group with tensor processing units. PRX Quantum 4, 010317 (2023).

    Article 

    Google Scholar 

  • Häner, T. & Steiger, D. S. 0.5 Petabyte simulation of a 45-qubit quantum circuit. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17 (Association for Computing Machinery, 2017).

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhu, D. et al. Cross-platform comparison of arbitrary quantum states. Nat. Commun. 13, 6620 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).

    Article 

    Google Scholar 

  • Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  • Lee, Y. A. & Vidal, G. Entanglement negativity and topological order. Phys. Rev. A 88, 042318 (2013).

    Article 

    Google Scholar 

  • Lu, T.-C., Hsieh, T. H. & Grover, T. Detecting topological order at finite temperature using entanglement negativity. Phys. Rev. Lett. 125, 116801 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Sang, S. et al. Entanglement negativity at measurement-induced criticality. PRX Quantum 2, 030313 (2021).

    Article 

    Google Scholar 

  • Wu, Y., Kolkowitz, S., Puri, S. & Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trivedi, R., Rubio, A. F. & Cirac, J. I. Quantum advantage and stability to errors in analogue quantum simulators. Preprint at https://arxiv.org/abs/2212.04924 (2022).

  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *