Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Google Scholar
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Google Scholar
Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
Google Scholar
Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022).
Google Scholar
Morvan, A. et al. Phase transition in random circuit sampling. Preprint at https://arxiv.org/abs/2304.11119 (2023).
Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
Google Scholar
Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).
Ghosh, S., Deshpande, A., Hangleiter, D., Gorshkov, A. V. & Fefferman, B. Complexity phase transitions generated by entanglement. Phys. Rev. Lett. 131, 030601 (2023).
Google Scholar
Kechedzhi, K. et al. Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments. Future Gener. Comput. Syst. 153, 431–441 (2024).
Google Scholar
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Modern Phys. 94, 015004 (2022).
Google Scholar
Hauru, M. et al. Simulation of quantum physics with tensor processing units: brute-force computation of ground states and time evolution. Preprint at https://arxiv.org/abs/2111.10466 (2021).
Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).
Google Scholar
Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).
Google Scholar
Choi, J. et al. Preparing random states and benchmarking with many-body quantum chaos. Nature 613, 468–473 (2023).
Google Scholar
Mark, D. K., Choi, J., Shaw, A. L., Endres, M. & Choi, S. Benchmarking quantum simulators using ergodic quantum dynamics. Phys. Rev. Lett. 131, 110601 (2023).
Google Scholar
Proctor, T., Rudinger, K., Young, K., Nielsen, E. & Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 18, 75–79 (2022).
Google Scholar
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Google Scholar
Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).
Google Scholar
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Google Scholar
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
Google Scholar
Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).
Google Scholar
Shaw, A. L. et al. Dark-state enhanced loading of an optical tweezer array. Phys. Rev. Lett. 130, 193402 (2023).
Google Scholar
Bridgeman, J. C. & Chubb, C. T. Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A Math. Theor. 50, 223001 (2017).
Google Scholar
Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).
Google Scholar
Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers? Phys. Rev. X 10, 041038 (2020).
Google Scholar
Moses, S. A. et al. A race race track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum simulator based on a photonic-bandgap metamaterial. Science 379, 278–283 (2023).
Google Scholar
Haah, J., Hastings, M. B., Kothari, R. & Low, G. H. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. SIAM J. Comput. 52, 6 (2021).
Google Scholar
Tran, M. C. et al. Locality and digital quantum simulation of power-law interactions. Phys. Rev. X 9, 031006 (2019).
Google Scholar
Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).
Google Scholar
Dalzell, A. M., Hunter-Jones, N., & Brandão, G. S. L. Random quantum circuits transform local noise into global white noise. Preprint at https://arxiv.org/abs/2111.14907 (2021).
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M. & Suganthan, P. N. Ensemble deep learning: a review. Eng. Appl. Artificial Intell. 115, 105151 (2022).
Google Scholar
Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).
Google Scholar
Linke, N. M. et al. Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer. Phys. Rev. A 98, 052334 (2018).
Google Scholar
Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).
Google Scholar
Plenio, M. B. Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).
Google Scholar
O’Donnell, R. & Wright, J. Efficient quantum tomography. In Proc. Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16 899–912 (Association for Computing Machinery, 2016).
Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inform. Theory 63, 5628 (2017).
Google Scholar
Elben, A. et al. Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020).
Google Scholar
Mooney, G. J., White, G. A. L., Hill, C. D. & Hollenberg, L. C. L. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quant. Technol. 4, 2100061 (2021).
Google Scholar
Lee, S., Chi, D. P., Oh, S. D. & Kim, J. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003).
Google Scholar
Bhosale, U. T., Tomsovic, S. & Lakshminarayan, A. Entanglement between two subsystems, the Wigner semicircle and extreme-value statistics. Phys. Rev. A 85, 062331 (2012).
Google Scholar
Datta, A. Negativity of random pure states. Phys. Rev. A 81, 052312 (2010).
Google Scholar
Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004).
Google Scholar
Ganahl, M. et al. Density matrix renormalization group with tensor processing units. PRX Quantum 4, 010317 (2023).
Google Scholar
Häner, T. & Steiger, D. S. 0.5 Petabyte simulation of a 45-qubit quantum circuit. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17 (Association for Computing Machinery, 2017).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Google Scholar
Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).
Google Scholar
Zhu, D. et al. Cross-platform comparison of arbitrary quantum states. Nat. Commun. 13, 6620 (2022).
Google Scholar
Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).
Google Scholar
Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).
Lee, Y. A. & Vidal, G. Entanglement negativity and topological order. Phys. Rev. A 88, 042318 (2013).
Google Scholar
Lu, T.-C., Hsieh, T. H. & Grover, T. Detecting topological order at finite temperature using entanglement negativity. Phys. Rev. Lett. 125, 116801 (2020).
Google Scholar
Sang, S. et al. Entanglement negativity at measurement-induced criticality. PRX Quantum 2, 030313 (2021).
Google Scholar
Wu, Y., Kolkowitz, S., Puri, S. & Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022).
Google Scholar
Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).
Google Scholar
Trivedi, R., Rubio, A. F. & Cirac, J. I. Quantum advantage and stability to errors in analogue quantum simulators. Preprint at https://arxiv.org/abs/2212.04924 (2022).
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).
Google Scholar
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).
Google Scholar