Strange IndiaStrange India


  • Pinsonneault, M. H., DePoy, D. L. & Coffee, M. The mass of the convective zone in FGK main-sequence stars and the effect of accreted planetary material on apparent metallicity determinations. Astrophys. J. Lett. 556, L59–L62 (2001).

    Article 
    CAS 

    Google Scholar 

  • Hühn, L. A. & Bitsch, B. How accretion of planet-forming disks influences stellar abundances. Astron. Astrophys. 676, 87 (2023).

    Article 

    Google Scholar 

  • Meléndez, J., Asplund, M., Gustafsson, B. & Yong, D. The peculiar solar composition and its possible relation to planet formation. Astrophys. J. Lett. 704, L66–L70 (2009).

    Article 

    Google Scholar 

  • Booth, R. A. & Owen, J. E. Fingerprints of giant planets in the composition of solar twins. Mon. Not. R. Astron. Soc. 493, 5079–5088 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article 
    CAS 

    Google Scholar 

  • Chambers, J. E. Stellar elemental abundance patterns: implications for planet formation. Astrophys. J. 724, 92–97 (2010).

    Article 
    CAS 

    Google Scholar 

  • Adibekyan, V. Tc trends and clues to Galactic evolution. Astron. Astrophys. 564, L15 (2014).

    Article 

    Google Scholar 

  • Nissen, P. E. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. Astron. Astrophys. 579, 52 (2015).

    Article 

    Google Scholar 

  • Ramírez, I. et al. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system. Astrophys. J. 808, 13 (2015).

    Article 

    Google Scholar 

  • Saffe, C. Implications for chemical tagging studies. Astron. Astrophys. 604, L4 (2017).

    Article 

    Google Scholar 

  • Oh, S. et al. Kronos and Krios: evidence for accretion of a massive, rocky planetary system in a comoving pair of solar-type stars. Astrophys. J. 854, 138 (2018).

    Article 

    Google Scholar 

  • Nagar, T., Spina, L. & Karakas, A. I. The chemical signatures of planetary engulfment events in binary systems. Astrophys. J. Lett. 888, L9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Galarza, J. Y., López-Valdivia, R. & Meléndez, J. Evidence of rocky planet engulfment in the wide binary system HIP 71726/HIP 71737. Astrophys. J. 922, 129 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, 1 (2021).

    Article 

    Google Scholar 

  • Kamdar, H. et al. Stars that move together were born together. Astrophys. J. Lett. 884, L42 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nelson, T. et al. Distant relatives: the chemical homogeneity of comoving pairs identified in Gaia. Astrophys. J. 921, 118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dotter, A., Conroy, C., Cargile, P. & Asplund, M. The influence of atomic diffusion on stellar ages and chemical tagging. Astrophys. J. 840, 99 (2017).

    Article 

    Google Scholar 

  • Yong, D. et al. C3PO: towards a complete census of co-moving pairs of stars. I. High precision stellar parameters for 250 stars. Mon. Not. R. Astron. Soc. 526, 2181–2195 (2023).

    Article 

    Google Scholar 

  • Behmard, A., Dai, F., Brewer, J. M., Berger, T. A. & Howard, A. W. Planet engulfment detections are rare according to observations and stellar modelling. Mon. Not. R. Astron. Soc. 521, 2969–2987 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ramírez, I., Meléndez, J. & Asplund, M. Accurate abundance patterns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation? Astron. Astrophys. 508, L17–L20 (2009).

    Article 

    Google Scholar 

  • Bitsch, B. & Izidoro, A. Giants are bullies: how their growth influences systems of inner sub-Neptunes and super-Earths. Astron. Astrophys. 674, 178 (2023).

    Article 

    Google Scholar 

  • Spina, L. et al. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 5, 1163–1169 (2021).

    Article 

    Google Scholar 

  • Tayar, J. & Joyce, M. Is thermohaline mixing the full story? Evidence for separate mixing events near the red giant branch bump. Astrophys. J. Lett. 935, L30 (2022).

    Article 

    Google Scholar 

  • Traxler, A., Garaud, P. & Stellmach, S. Numerically determined transport laws for fingering (‘thermohaline’) convection in astrophysics. Astrophys. J. Lett. 728, L29 (2011).

    Article 

    Google Scholar 

  • Brown, J. M., Pascale, G. & Stellmach, S. Chemical transport and spontaneous layer formation in fingering convection in astrophysics. Astrophys. J. 768, 34 (2013).

    Article 

    Google Scholar 

  • Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, 152 (2021).

    Article 

    Google Scholar 

  • Matsumoto, Y. & Ogihara, M. Breaking resonant chains: destabilization of resonant planets due to long-term mass evolution. Astrophys. J. 893, 43 (2020).

    Article 

    Google Scholar 

  • Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article 

    Google Scholar 

  • Mulders, G. D., Pascucci, I., Apai, D. & Ciesla, F. J. The Exoplanet Population Observation Simulator. I. The inner edges of planetary systems. Astron. J. 156, 24–43 (2018).

    Article 

    Google Scholar 

  • Liu, F. et al. Detailed chemical compositions of planet-hosting stars—I. Exploration of possible planet signatures. Mon. Not. R. Astron. Soc. 495, 3961–3973 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, F. et al. Detailed elemental abundances of binary stars: searching for signatures of planet formation and atomic diffusion. Mon. Not. R. Astron. Soc. 508, 1227–1240 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, F., Asplund, M., Ramírez, I., Yong, D. & Meléndez, J. A high-precision chemical abundance analysis of the HAT-P-1 stellar binary: constraints on planet formation. Mon. Not. R. Astron. Soc. 442, L51–L55 (2014).

    Article 
    CAS 

    Google Scholar 

  • Meléndez, J. et al. The remarkable solar twin HIP 56948: a prime target in the quest for other Earths. Astron. Astrophys. 543, 29 (2012).

    Article 

    Google Scholar 

  • McKenzie, M. et al. The complex stellar system M 22: confirming abundance variations with high precision differential measurements. Mon. Not. R. Astron. Soc. 516, 3515–3531 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).

    Article 
    CAS 

    Google Scholar 

  • Sobeck, J. S. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175–192 (2011).

    Article 

    Google Scholar 

  • Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. In Proc. IAU Symposium Vol. 210 (eds Piskunov, N. et al.) 20 (Cambridge University Press, 2003).

  • Kurucz, R. & Bell, B. Atomic line data. in Kurucz CD-ROM No. 23 (Harvard-Smithsonian Centre for Astrophysics, 1995); http://kurucz.harvard.edu/linelists.html.

  • Battistini, C. & Bensby, T. The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk. Astron. Astrophys. 577, 9 (2015).

    Article 

    Google Scholar 

  • Amarsi, A. M., Asplund, M., Collet, R. & Leenaarts, J. Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres. Mon. Not. R. Astron. Soc. 455, 3735–3751 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lind, K., Asplund, M., Barklem, P. S. & Belyaev, A. K. Non-LTE calculations for neutral Na in late-type stars using improved atomic data. Astron. Astrophys. 528, 103 (2011).

    Article 

    Google Scholar 

  • Bergemann, M. et al. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and <3D> models. I. Methods and application to magnesium abundances in standard stars. Astrophys. J. 847, 15 (2017).

    Article 

    Google Scholar 

  • Nordlander, T. & Lind, K. Non-LTE aluminium abundances in late-type stars. Astron. Astrophys. 607, 75 (2017).

    Article 

    Google Scholar 

  • Bergemann, M. et al. Observational constraints on the origin of the elements. I. 3D NLTE formation of Mn lines in late-type stars. Astron. Astrophys. 631, 80 (2019).

    Article 

    Google Scholar 

  • Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, 71 (2014).

    Article 

    Google Scholar 

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article 

    Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article 
    CAS 

    Google Scholar 

  • Michaud, G., Fontaine, G. & Beaudet, G. The lithium abundance—constraints on stellar evolution. Astrophys. J. 282, 206–213 (1984).

    Article 
    CAS 

    Google Scholar 

  • Liu, F. et al. Chemical (in)homogeneity and atomic diffusion in the open cluster M 67. Astron. Astrophys. 627, 117 (2019).

    Article 

    Google Scholar 

  • Théado, S. & Vauclair, S. Metal-rich accretion and thermohaline instabilities in exoplanet-host stars: consequences on the light elements abundances. Astrophys. J. 744, 123 (2012).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *