Pinsonneault, M. H., DePoy, D. L. & Coffee, M. The mass of the convective zone in FGK main-sequence stars and the effect of accreted planetary material on apparent metallicity determinations. Astrophys. J. Lett. 556, L59–L62 (2001).
Google Scholar
Hühn, L. A. & Bitsch, B. How accretion of planet-forming disks influences stellar abundances. Astron. Astrophys. 676, 87 (2023).
Google Scholar
Meléndez, J., Asplund, M., Gustafsson, B. & Yong, D. The peculiar solar composition and its possible relation to planet formation. Astrophys. J. Lett. 704, L66–L70 (2009).
Google Scholar
Booth, R. A. & Owen, J. E. Fingerprints of giant planets in the composition of solar twins. Mon. Not. R. Astron. Soc. 493, 5079–5088 (2020).
Google Scholar
Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).
Google Scholar
Chambers, J. E. Stellar elemental abundance patterns: implications for planet formation. Astrophys. J. 724, 92–97 (2010).
Google Scholar
Adibekyan, V. Tc trends and clues to Galactic evolution. Astron. Astrophys. 564, L15 (2014).
Google Scholar
Nissen, P. E. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. Astron. Astrophys. 579, 52 (2015).
Google Scholar
Ramírez, I. et al. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system. Astrophys. J. 808, 13 (2015).
Google Scholar
Saffe, C. Implications for chemical tagging studies. Astron. Astrophys. 604, L4 (2017).
Google Scholar
Oh, S. et al. Kronos and Krios: evidence for accretion of a massive, rocky planetary system in a comoving pair of solar-type stars. Astrophys. J. 854, 138 (2018).
Google Scholar
Nagar, T., Spina, L. & Karakas, A. I. The chemical signatures of planetary engulfment events in binary systems. Astrophys. J. Lett. 888, L9 (2020).
Google Scholar
Galarza, J. Y., López-Valdivia, R. & Meléndez, J. Evidence of rocky planet engulfment in the wide binary system HIP 71726/HIP 71737. Astrophys. J. 922, 129 (2021).
Google Scholar
Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, 1 (2021).
Google Scholar
Kamdar, H. et al. Stars that move together were born together. Astrophys. J. Lett. 884, L42 (2019).
Google Scholar
Nelson, T. et al. Distant relatives: the chemical homogeneity of comoving pairs identified in Gaia. Astrophys. J. 921, 118 (2021).
Google Scholar
Dotter, A., Conroy, C., Cargile, P. & Asplund, M. The influence of atomic diffusion on stellar ages and chemical tagging. Astrophys. J. 840, 99 (2017).
Google Scholar
Yong, D. et al. C3PO: towards a complete census of co-moving pairs of stars. I. High precision stellar parameters for 250 stars. Mon. Not. R. Astron. Soc. 526, 2181–2195 (2023).
Google Scholar
Behmard, A., Dai, F., Brewer, J. M., Berger, T. A. & Howard, A. W. Planet engulfment detections are rare according to observations and stellar modelling. Mon. Not. R. Astron. Soc. 521, 2969–2987 (2023).
Google Scholar
Ramírez, I., Meléndez, J. & Asplund, M. Accurate abundance patterns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation? Astron. Astrophys. 508, L17–L20 (2009).
Google Scholar
Bitsch, B. & Izidoro, A. Giants are bullies: how their growth influences systems of inner sub-Neptunes and super-Earths. Astron. Astrophys. 674, 178 (2023).
Google Scholar
Spina, L. et al. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 5, 1163–1169 (2021).
Google Scholar
Tayar, J. & Joyce, M. Is thermohaline mixing the full story? Evidence for separate mixing events near the red giant branch bump. Astrophys. J. Lett. 935, L30 (2022).
Google Scholar
Traxler, A., Garaud, P. & Stellmach, S. Numerically determined transport laws for fingering (‘thermohaline’) convection in astrophysics. Astrophys. J. Lett. 728, L29 (2011).
Google Scholar
Brown, J. M., Pascale, G. & Stellmach, S. Chemical transport and spontaneous layer formation in fingering convection in astrophysics. Astrophys. J. 768, 34 (2013).
Google Scholar
Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, 152 (2021).
Google Scholar
Matsumoto, Y. & Ogihara, M. Breaking resonant chains: destabilization of resonant planets due to long-term mass evolution. Astrophys. J. 893, 43 (2020).
Google Scholar
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Google Scholar
Mulders, G. D., Pascucci, I., Apai, D. & Ciesla, F. J. The Exoplanet Population Observation Simulator. I. The inner edges of planetary systems. Astron. J. 156, 24–43 (2018).
Google Scholar
Liu, F. et al. Detailed chemical compositions of planet-hosting stars—I. Exploration of possible planet signatures. Mon. Not. R. Astron. Soc. 495, 3961–3973 (2020).
Google Scholar
Liu, F. et al. Detailed elemental abundances of binary stars: searching for signatures of planet formation and atomic diffusion. Mon. Not. R. Astron. Soc. 508, 1227–1240 (2021).
Google Scholar
Liu, F., Asplund, M., Ramírez, I., Yong, D. & Meléndez, J. A high-precision chemical abundance analysis of the HAT-P-1 stellar binary: constraints on planet formation. Mon. Not. R. Astron. Soc. 442, L51–L55 (2014).
Google Scholar
Meléndez, J. et al. The remarkable solar twin HIP 56948: a prime target in the quest for other Earths. Astron. Astrophys. 543, 29 (2012).
Google Scholar
McKenzie, M. et al. The complex stellar system M 22: confirming abundance variations with high precision differential measurements. Mon. Not. R. Astron. Soc. 516, 3515–3531 (2022).
Google Scholar
Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).
Google Scholar
Sobeck, J. S. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175–192 (2011).
Google Scholar
Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. In Proc. IAU Symposium Vol. 210 (eds Piskunov, N. et al.) 20 (Cambridge University Press, 2003).
Kurucz, R. & Bell, B. Atomic line data. in Kurucz CD-ROM No. 23 (Harvard-Smithsonian Centre for Astrophysics, 1995); http://kurucz.harvard.edu/linelists.html.
Battistini, C. & Bensby, T. The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk. Astron. Astrophys. 577, 9 (2015).
Google Scholar
Amarsi, A. M., Asplund, M., Collet, R. & Leenaarts, J. Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres. Mon. Not. R. Astron. Soc. 455, 3735–3751 (2016).
Google Scholar
Lind, K., Asplund, M., Barklem, P. S. & Belyaev, A. K. Non-LTE calculations for neutral Na in late-type stars using improved atomic data. Astron. Astrophys. 528, 103 (2011).
Google Scholar
Bergemann, M. et al. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and <3D> models. I. Methods and application to magnesium abundances in standard stars. Astrophys. J. 847, 15 (2017).
Google Scholar
Nordlander, T. & Lind, K. Non-LTE aluminium abundances in late-type stars. Astron. Astrophys. 607, 75 (2017).
Google Scholar
Bergemann, M. et al. Observational constraints on the origin of the elements. I. 3D NLTE formation of Mn lines in late-type stars. Astron. Astrophys. 631, 80 (2019).
Google Scholar
Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, 71 (2014).
Google Scholar
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Google Scholar
Michaud, G., Fontaine, G. & Beaudet, G. The lithium abundance—constraints on stellar evolution. Astrophys. J. 282, 206–213 (1984).
Google Scholar
Liu, F. et al. Chemical (in)homogeneity and atomic diffusion in the open cluster M 67. Astron. Astrophys. 627, 117 (2019).
Google Scholar
Théado, S. & Vauclair, S. Metal-rich accretion and thermohaline instabilities in exoplanet-host stars: consequences on the light elements abundances. Astrophys. J. 744, 123 (2012).
Google Scholar