Strange IndiaStrange India


  • He, R. et al. Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 14, 5723–5759 (2021).

    Article 
    CAS 

    Google Scholar 

  • He, R. et al. All-perovskite tandem 1 cm2 cells with improved interface quality. Nature 618, 80–86 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W. et al. Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy 96, 107078 (2022).

  • Li, C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 5, 768–776 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ke, W., Stoumpos, C. C. & Kanatzidis, M. G. “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31, 1803230 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liao, W. et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, L. et al. Efficient narrow‐bandgap mixed tin‐lead perovskite solar cells via natural tin oxide doping. Adv. Mater. 35, 2301125 (2023).

    Article 
    CAS 

    Google Scholar 

  • Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article 
    ADS 

    Google Scholar 

  • Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, C. et al. Highly efficient quasi‐2D green perovskite light‐emitting diodes with bifunctional amino acid. Adv. Opt. Mater. 10, 2200276 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, G. et al. Ionic liquid stabilizing high‐efficiency tin halide perovskite solar cells. Adv. Energy Mater. 11, 2101539 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, X. et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule 3, 1963–1976 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, F. et al. Is Excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6, 1502206 (2016).

    Article 
    ADS 

    Google Scholar 

  • Jiang, Q. et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Article 

    Google Scholar 

  • Ke, W. et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Adv. Mater. 28, 5214–5221 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tumen‐Ulzii, G. et al. Detrimental effect of unreacted PbI2 on the long‐term stability of perovskite solar cells. Adv. Mater. 32, 1905035 (2020).

    Article 

    Google Scholar 

  • Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yokoyama, T. et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776–782 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, P. et al. Ligand engineering in tin-based perovskite solar cells. Nanomicro Lett. 15, 167 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao, W. et al. Modulation of nucleation and crystallization in PbI2 films promoting preferential perovskite orientation growth for efficient solar cells. Energy Environ. Sci. 16, 252–264 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ye, F. et al. Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33, 2007126 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. A generic lanthanum doping strategy enabling efficient lead halide perovskite luminescence for backlights. Sci. Bull. 68, 1017–1026 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article 

    Google Scholar 

  • Liao, Y. et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693–6699 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glowienka, D. & Galagan, Y. Light intensity analysis of photovoltaic parameters for perovskite solar cells. Adv. Mater. 34, 2105920 (2022).

    Article 
    CAS 

    Google Scholar 

  • Huang, Z., Hu, X., Liu, C., Tan, L. & Chen, Y. Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance. Adv. Funct. Mater. 27, 1703061 (2017).

    Article 

    Google Scholar 

  • Kapil, G. et al. Tin‐lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11, 2101069 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuan, C. H. et al. Dopant‐free pyrrolopyrrole‐based (PPr) polymeric hole‐transporting materials for efficient tin‐based perovskite solar cells with stability over 6000 h. Adv. Mater. 35, 2300681 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Carbazole-based hole transport polymer for methylammonium-free tin–lead perovskite solar cells with enhanced efficiency and stability. ACS Energy Lett. 7, 3353–3361 (2022).

    Article 
    CAS 

    Google Scholar 

  • Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005).

    Article 
    CAS 

    Google Scholar 

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *