Strange IndiaStrange India


  • Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Pl. Sci. 44, 647–683 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Martin, W. F., Bryant, D. A. & Beatty, J. T. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 42, 205–231 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Orf, G. S. & Blankenship, R. E. Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res. 116, 315–331 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bryant, D. A. et al. in Functional Genomics and Evolution of Photosynthetic Systems (eds Burnap, R. & Vermaas, W.) 47–102 (Springer Netherlands, 2012).

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Raven, J. A. Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat. Microb. Ecol. 56, 177–192 (2009).

    Article 
    ADS 

    Google Scholar 

  • Thiel, V., Tank, M. & Bryant, D. A. Diversity of chlorophototrophic bacteria revealed in the omics era. Annu. Rev. Plant Biol. 69, 21–49 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ehrenberg, C. G. Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur (Voss, Leipzig, 1838).

  • Nadson, G. The morphology of inferior algae. III. Chlorobium limicola Nads., the green chlorophyll bearing microbe. Bull. Jard. Bot. St Pétreb. 6, 190 (1906).

    Google Scholar 

  • Zeng, Y., Feng, F., Medová, H., Dean, J. & Koblížek, M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl Acad. Sci. USA 111, 7795–7800 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pierson, B. K. & Castenholz, R. W. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100, 5–24 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gest, H. & Favinger, J. L. Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a ‘new’ form of bacteriochlorophyll. Arch. Microbiol. 136, 11–16 (1983).

    Article 
    CAS 

    Google Scholar 

  • Bryant, D. A. et al. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317, 523–526 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yabe, S. et al. Vulcanimicrobium alpinus gen. nov. sp. nov., the first cultivated representative of the candidate phylum “Eremiobacterota”, is a metabolically versatile aerobic anoxygenic phototroph. ISME Commun. 2, 120 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 225–274 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hohmann-Marriott, M. F. & Blankenship, R. E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olson, J. M. & Blankenship, R. E. in Discoveries in Photosynthesis (eds Govindjee et al.) 1073–1086 (Springer Netherlands, 2005).

  • Cardona, T. Thinking twice about the evolution of photosynthesis. Open Biol. 9, 180246 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanada, S., Hiraishi, A., Shimada, K. & Matsuura, K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int. J. Syst. Evol. Microbiol. 45, 676–681 (1995).

    CAS 

    Google Scholar 

  • Keppen, O. I., Baulina, O. I. & Kondratieva, E. N. Oscillochloris trichoides neotype strain DG-6. Photosynth. Res. 41, 29–33 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klappenbach, J. A. & Pierson, B. K. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats. Arch. Microbiol. 181, 17–25 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gaisin, V. A. et al. ‘Candidatus Viridilinea mediisalina’, a novel phototrophic Chloroflexi bacterium from a Siberian soda lake. FEMS Microbiol. Lett. 366, fnz043 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanada, S. in The Prokaryotes: Other Major Lineages of Bacteria and The Archaea (eds Rosenberg, E. et al.) 515–532 (Springer Berlin Heidelberg, 2014).

  • Ward, L. M., Hemp, J., Shih, P. M., McGlynn, S. E. & Fischer, W. W. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Front. Microbiol. 9, 260 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frigaard, N.-U. & Bryant, D. A. in Complex Intracellular Structures in Prokaryotes (ed. Shively, J. M.) 79–114 (Springer, 2006).

  • Sadekar, S., Raymond, J. & Blankenship, R. E. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol. Biol. Evol. 23, 2001–2007 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamilton, T. L. The trouble with oxygen: the ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radic. Biol. Med. 140, 233–249 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hegler, F., Posth, N. R., Jiang, J. & Kappler, A. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol. Ecol. 66, 250–260 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coates, J. D., Ellis, D. J., Gaw, C. V. & Lovley, D. R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol. 49, 1615–1622 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bryant, D. A., Hunter, C. N. & Warren, M. J. Biosynthesis of the modified tetrapyrroles—the pigments of life. J. Biol. Chem. 295, 6888–6925 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hohmann-Marriott, M. F., Blankenship, R. E. & Roberson, R. W. The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth. Res. 86, 145–154 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, K.-H., Urban, V. S., Wen, J., Xin, Y. & Blankenship, R. E. SANS investigation of the photosynthetic machinery of Chloroflexus aurantiacus. Biophys. J. 99, 2398–2407 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, P. W., Lower, R. P. J., Kim, N. K. D. & Young, J. P. W. Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol. 18, 141–148 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, H. et al. Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium Chlorobaculum tepidum. Proc. Natl Acad. Sci. USA 120, e2216734120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gisriel, C. et al. Structure of a symmetric photosynthetic reaction center–photosystem. Science 357, 1021–1025 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Olson, J. M. in Discoveries in Photosynthesis (eds Govindjee et al.) 421–427 (Springer Netherlands, 2005).

  • Tang, K.-H. et al. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12, 334 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ducluzeau, A. L., Chenu, E., Capowiez, L. & Baymann, F. The Rieske/cytochrome b complex of Heliobacteria. Biochim. Biophys. Acta Bioenerg. 1777, 1140–1146 (2008).

    Article 
    CAS 

    Google Scholar 

  • Tourova, T. P. et al. Phylogeny of anoxygenic filamentous phototrophic bacteria of the family Oscillochloridaceae as inferred from comparative analyses of the rrs, cbbL, and nifH genes. Microbiology 75, 192–200 (2006).

    Article 
    CAS 

    Google Scholar 

  • Shih, P. M., Ward, L. M. & Fischer, W. W. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proc. Natl Acad. Sci. USA 114, 10749–10754 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiff, S. L. et al. Millions of Boreal Shield lakes can be used to probe Archaean Ocean biogeochemistry. Sci Rep. 7, 46708 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schindler, D. W. et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl Acad. Sci. USA 105, 11254–11258 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinclair, L., Peura, S., Hernandez, P., Schattenhofer, M. & Eiler, A. Novel chemolithotrophic and anoxygenic phototrophic genomes extracted from ice-covered boreal lakes. Preprint at bioRxiv https://doi.org/10.1101/139212 (2017).

  • Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kiss, H. et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). Stand. Genomic Sci. 5, 356–370 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawai, S., Nishihara, A., Matsuura, K. & Haruta, S. Hydrogen-dependent autotrophic growth in phototrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs. FEMS Microbiol. Lett. 366, fnz122 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Banda, D. M. et al. Novel bacterial clade reveals origin of form I RuBisCO. Nat. Plants 6, 1158–1166 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schulz, L. et al. Evolution of increased complexity and specificity at the dawn of form I RuBisCOs. Science 378, 155–160 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • DMTI Spatial Inc. DMTI CanMap water; https://uwaterloo.ca/library/geospatial/collections/canadian-geospatial-data-resources/canada/dmti-canmap-water (2012).

  • DMTI Spatial Inc. DMTI digital elevation model; https://uwaterloo.ca/library/geospatial/collections/canadian-geospatial-data-resources/canada/dmti-digital-elevation-model (2011).

  • Environmental Systems Research Institute. Global Geographic Information Systems (GIS); https://uwaterloo.ca/library/geospatial/collections/us-and-world-geospatial-data-resources/global-geographic-information-systems-gis (2003).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Armstrong, F. A. J. & Schindler, D. W. Preliminary chemical characterization of waters in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Can. 28, 171–187 (1971).

    Article 
    CAS 

    Google Scholar 

  • Brunskill, G. J. & Schindler, D. W. Geography and bathymetry of selected lake basins, Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Can. 28, 139–155 (1971).

    Article 

    Google Scholar 

  • Schindler, D. W. Light, temperature, and oxygen regimes of selected lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Can. 28, 157–169 (1971).

    Article 

    Google Scholar 

  • Schindler, D. W. & Fee, E. J. Experimental Lakes Area: whole-lake experiments in eutrophication. J. Fish. Res. Bd Can. 31, 937–953 (1974).

    Article 

    Google Scholar 

  • Vandermeulen, J. H., Davis, N. D. & Muscatine, L. The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar. Biol. 16, 185–191 (1972).

    Article 

    Google Scholar 

  • Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article 
    CAS 

    Google Scholar 

  • Pfennig, N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Evol. Microbiol. 28, 283–288 (1978).

    CAS 

    Google Scholar 

  • Imhoff, J. F. in The Prokaryotes (eds Rosenberg, E. et al.) 151–178 (Springer Berlin Heidelberg, 2014).

  • Widdel, F. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten. PhD thesis, Universität Göttingen (1980).

  • Frigaard, N.-U., Takaichi, S., Hirota, M., Shimada, K. & Matsuura, K. Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch. Microbiol. 167, 343–349 (1997).

    Article 
    CAS 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. & Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bartram, A. K., Lynch, M. D., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavaco, M. A. et al. Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiol. Ecol. 95, fiz161 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. and Goodfellow, M.) 115–147 (John Wiley & Sons, 1991).

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Min, D., Doxey, A. C. & Neufeld, J. D. AXIOME3: automation, extension, and integration of microbial ecology. GigaScience 10, giab006 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glöckner, F. O. et al. 25 Years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Rodríguez-Pérez, H., Ciuffreda, L. & Flores, C. NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data. Bioinformatics 37, 1600–1601 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformatics 21, 257 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sievers, F. et al. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int. J. Syst. Evol. Microbiol. 52, 187–193 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bergstrand, L. H., Cardenas, E., Holert, J., Hamme, J. D. V. & Mohn, W. W. Delineation of steroid-degrading microorganisms through comparative genomic analysis. mBio 7, e00166-16 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardona, T. Early Archean origin of heterodimeric photosystem I. Heliyon 4, e00548 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedersen, M. Ø., Linnanto, J., Frigaard, N.-U., Nielsen, N. C. & Miller, M. A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth. Res. 104, 233–243 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tabita, F. R., Hanson, T. E., Satagopan, S., Witte, B. H. & Kreel, N. E. Phylogenetic and evolutionary relationships of RuBisCO and the RuBisCO-like proteins and the functional lessons provided by diverse molecular forms. Phil. Trans. R. Soc. B 363, 2629–2640 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuji, J. M. et al. Anoxygenic photosynthesis and iron–sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. ISME J. 14, 2732–2747 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    Article 
    CAS 

    Google Scholar 

  • Singh, R. G. et al. Unipept 4.0: functional analysis of metaproteome data. J. Proteome Res. 18, 606–615 (2018).

    Article 

    Google Scholar 

  • Fish, J. A. et al. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *