Wittmann, C. et al. Peculiar compact stellar systems in the Fornax cluster. Mon. Not. R. Astron. Soc. 459, 4450–4466 (2016).
Google Scholar
Saifollahi, T. et al. Ultra-compact dwarfs beyond the centre of the Fornax galaxy cluster: hints of UCD formation in low-density environments. Mon. Not. R. Astron. Soc. 504, 3580–3609 (2021).
Google Scholar
Liu, C. et al. The Next Generation Virgo Cluster Survey. X. Properties of ultra-compact dwarfs in the M87, M49, and M60 regions. Astrophys. J. 812, 34 (2015).
Google Scholar
Liu, C. et al. The Next Generation Virgo Cluster Survey. XXXIV. Ultracompact dwarf galaxies in the Virgo Cluster. Astrophys. J. Suppl. Ser. 250, 17 (2020).
Google Scholar
Drinkwater, M. J. et al. A class of compact dwarf galaxies from disruptive processes in galaxy clusters. Nature 423, 519–521 (2003).
Google Scholar
Misgeld, I. & Hilker, M. Families of dynamically hot stellar systems over 10 orders of magnitude in mass. Mon. Not. R. Astron. Soc. 414, 3699–3710 (2011).
Google Scholar
Mieske, S., Hilker, M. & Misgeld, I. The specific frequencies of ultra-compact dwarf galaxies. Astron. Astrophys. 537, A3 (2012).
Google Scholar
Evstigneeva, E. A. et al. Structural properties of ultra-compact dwarf galaxies in the Fornax and Virgo Clusters. Astron. J 136, 461–478 (2008).
Google Scholar
Voggel, K., Hilker, M. & Richtler, T. Globular cluster clustering and tidal features around ultra-compact dwarf galaxies in the halo of NGC 1399. Astron. Astrophys. 586, A102 (2016).
Google Scholar
Norris, M. A. et al. An extended star formation history in an ultra-compact dwarf. Mon. Not. R. Astron. Soc. 451, 3615–3626 (2015).
Google Scholar
Mieske, S. et al. On central black holes in ultra-compact dwarf galaxies. Astron. Astrophys. 558, A14 (2013).
Google Scholar
Dumont, A. et al. A population of luminous globular clusters and stripped nuclei with elevated mass to light ratios around NGC 5128. Astrophys. J. 929, 147 (2022).
Google Scholar
Seth, A. C. et al. A supermassive black hole in an ultra-compact dwarf galaxy. Nature 513, 398–400 (2014).
Google Scholar
Ahn, C. P. et al. Detection of supermassive black holes in two Virgo ultra-compact dwarf galaxies. Astrophys. J. 839, 72 (2017).
Google Scholar
Ahn, C. P. et al. The black hole in the most massive ultra-compact dwarf galaxy M59-UCD3. Astrophys. J. 858, 102 (2018).
Google Scholar
Afanasiev, A. V. et al. A 3.5 million solar masses black hole in the centre of the ultracompact dwarf galaxy fornax UCD3. Mon. Not. R. Astron. Soc. 477, 4856–4865 (2018).
Google Scholar
Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters. Astron. Astrophys. Rev. 28, 4 (2020).
Google Scholar
Bekki, K., Couch, W. J., Drinkwater, M. J. & Shioya, Y. Galaxy threshing and the origin of ultra-compact dwarf galaxies in the Fornax cluster. Mon. Not. R. Astron. Soc. 344, 399–411 (2003).
Google Scholar
Pfeffer, J. & Baumgardt, H. Ultra-compact dwarf galaxy formation by tidal stripping of nucleated dwarf galaxies. Mon. Not. R. Astron. Soc. 433, 1997–2005 (2013).
Google Scholar
Wellons, S. et al. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0. Mon. Not. R. Astron. Soc. 456, 1030–1048 (2016).
Google Scholar
Mihos, J. C. et al. Galaxies at the extremes: ultra-diffuse galaxies in the Virgo Cluster. Astrophys. J. Lett. 809, L21 (2015).
Google Scholar
Bennet, P. et al. Evidence for ultra-diffuse galaxy “formation” through galaxy interactions. Astrophys. J. Lett. 866, L11 (2018).
Google Scholar
Peñarrubia, J., Navarro, J. F., McConnachie, A. W. & Martin, N. F. The signature of galactic tides in local group dwarf spheroidals. Astrophys. J. 698, 222–232 (2009).
Google Scholar
van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma Cluster. Astrophys. J. Lett. 798, L45 (2015).
Google Scholar
Carleton, T. et al. The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Mon. Not. R. Astron. Soc. 485, 382–395 (2019).
Google Scholar
Zhang, H.-X. et al. The Next Generation Virgo Cluster Survey. VI. The kinematics of ultra-compact dwarfs and globular clusters in M87. Astrophys. J. 802, 30 (2015).
Google Scholar
Ko, Y. et al. The Next Generation Virgo Cluster Survey. XXXIII. Stellar population gradients in the Virgo Cluster core globular cluster system. Astrophys. J. 931, 120 (2022).
Google Scholar
Mihos, J. C. et al. The Burrell Schmidt deep Virgo survey: tidal debris, galaxy halos, and diffuse intracluster light in the Virgo Cluster. Astrophys. J. 834, 16 (2017).
Google Scholar
Koch, A. et al. Threshing in action: the tidal disruption of a dwarf galaxy by the Hydra I Cluster. Astrophys. J. Lett. 755, L13 (2012).
Google Scholar
Lim, S. et al. The Next Generation Virgo Cluster Survey. XXX. Ultra-diffuse galaxies and their globular cluster systems. Astrophys. J. 899, 69 (2020).
Google Scholar
Pfeffer, J., Griffen, B. F., Baumgardt, H. & Hilker, M. Contribution of stripped nuclear clusters to globular cluster and ultra-compact dwarf galaxy populations. Mon. Not. R. Astron. Soc. 444, 3670–3683 (2014).
Google Scholar
Gilmore, G. et al. The observed properties of dark matter on small spatial scales. Astrophys. J. 663, 948–959 (2007).
Google Scholar
Peñarrubia, J., Navarro, J. F. & McConnachie, A. W. The tidal evolution of local group dwarf spheroidals. Astrophys. J. 673, 226–240 (2008).
Google Scholar
Errani, R., Penarrubia, J. & Tormen, G. Constraining the distribution of dark matter in dwarf spheroidal galaxies with stellar tidal streams. Mon. Not. R. Astron. Soc. 449, L46–L50 (2015).
Google Scholar
Sales, L. V. et al. The formation of ultradiffuse galaxies in clusters. Mon. Not. R. Astron. Soc. 494, 1848–1858 (2020).
Google Scholar
Montes, M. et al. The galaxy “missing dark matter” NGC 1052-DF4 is undergoing tidal disruption. Astrophys. J. 904, 114 (2020).
Google Scholar
Keim, M. A. et al. Tidal distortions in NGC1052-DF2 and NGC1052-DF4: independent evidence for a lack of dark matter. Astrophys. J. 935, 160 (2022).
Google Scholar
Bekki, K., Couch, W. J. & Drinkwater, M. J. Galaxy threshing and the formation of ultra-compact dwarf galaxies. Astrophys. J. Lett. 552, L105–L108 (2001).
Google Scholar
Janz, J. et al. The AIMSS project – III. The stellar populations of compact stellar systems. Mon. Not. R. Astron. Soc. 456, 617–632 (2016).
Google Scholar
Roediger, J. C. et al. The Next Generation Virgo Cluster Survey. XXIV. The red sequence to ∼106 L⊙ and comparisons with galaxy formation models. Astrophys. J. 836, 120 (2017).
Google Scholar
Zhang, H.-X. et al. Stellar population properties of ultra-compact dwarfs in M87: a mass-metallicity correlation connecting low-metallicity globular clusters and compact ellipticals. Astrophys. J. 858, 37 (2018).
Google Scholar
Strader, J. et al. Wide-field precision kinematics of the M87 globular cluster system. Astrophys. J. Suppl. Ser. 197, 33 (2011).
Google Scholar
Romanowsky, A. J. et al. The ongoing assembly of a central cluster galaxy: phase-space substructures in the halo of M87. Astrophys. J. 748, 29 (2012).
Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O. & Mihos, J. C. The build-up of the cD halo of M 87: evidence for accretion in the last Gyr. Astron. Astrophys. 579, L3 (2015).
Google Scholar
Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIII. The luminosity and mass function of galaxies in the core of the Virgo Cluster and the contribution from disrupted satellites. Astrophys. J. 824, 10 (2016).
Google Scholar
Voggel, K. T. et al. The impact of stripped nuclei on the supermassive black hole number density in the local universe. Astrophys. J. 871, 159 (2019).
Google Scholar
Li, C. et al. A discrete chemo-dynamical model of M87’s globular clusters: kinematics extending to ∼ 400 kpc. Mon. Not. R. Astron. Soc. 492, 2775–2795 (2020).
Google Scholar
Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIV. The discovery of low-mass galaxies and a new galaxy catalog in the core of the Virgo Cluster. Astrophys. J. 890, 128 (2020).
Google Scholar
Jordán, A. et al. The ACS Virgo Cluster Survey XVI. Selection procedure and catalogs of globular cluster candidates. Astrophys. J. Suppl. Ser. 180, 54–66 (2009).
Google Scholar
Côté, P. et al. The ACS Virgo Cluster Survey. VIII. The nuclei of early-type galaxies. Astrophys. J. Suppl. Ser. 165, 57–94 (2006).
Google Scholar
Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. I. Introduction to the survey. Astrophys. J. Suppl. Ser. 200, 4 (2012).
Google Scholar
Boulade, O. et al. MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera. Proc. SPIE https://doi.org/10.1117/12.459890 (2003).
Blakeslee, J. P. et al. The ACS Fornax Cluster Survey. V. Measurement and recalibration of surface brightness fluctuations and a precise value of the Fornax–Virgo relative distance. Astrophys. J. 694, 556–572 (2009).
Google Scholar
Guérou, A. et al. The Next Generation Virgo Cluster Survey. XII. Stellar populations and kinematics of compact, low-mass early-type galaxies from Gemini GMOS-IFU spectroscopy. Astrophys. J. 804, 70 (2015).
Google Scholar
Côté, P. et al. The ACS Virgo Cluster Survey. I. Introduction to the survey. Astrophys. J. Suppl. Ser. 153, 223–242 (2004).
Google Scholar
Ford, H. C. et al. Advanced camera for the Hubble Space Telescope. Proc. SPIE https://doi.org/10.1117/12.324464 (1998).
Paudel, S., Lisker, T. & Janz, J. Nuclei of early-type dwarf galaxies: are they progenitors of ultra-compact dwarf galaxies? Astrophys. J. Lett. 724, L64–L68 (2010).
Google Scholar
Mihos, J. C. et al. The distance and dynamical history of the virgo cluster ultradiffuse galaxy vcc 615. Astrophys. J. 924, 87 (2022).
Google Scholar
Toloba, E. et al. The Next Generation Virgo Cluster Survey (NGVS). XXXV. First kinematical clues of overly-massive dark matter halos in several ultra-diffuse galaxies in the Virgo Cluster. Astrophys. J. 951, 77 (2023).
Sánchez-Janssen, R. et al. The Next Generation Virgo Cluster Survey. XXIII. Fundamentals of nuclear star clusters over seven decades in galaxy mass. Astrophys. J. 878, 18 (2019).
Google Scholar
Peng, C. Y. et al. Detailed structural decomposition of galaxy images. Astron. J 124, 266–293 (2002).
Google Scholar
Peng, C. Y. et al. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J 139, 2097–2129 (2010).
Google Scholar
King, I. The structure of star clusters. I. an empirical density law. Astron. J 67, 471 (1962).
Google Scholar
Sersic, J. L. Atlas de Galaxias Australes Vol. 1 (Observatorio Astronomico, 1968).
Bradley, L. et al. astropy/photutils: 1.0.0. Zenodo https://doi.org/10.5281/zenodo.4044744 (2020).
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
Google Scholar
Häussler, B. et al. GEMS: galaxy fitting catalogs and testing parametric galaxy fitting codes: GALFIT and GIM2D. Astrophys. J. Suppl. Ser. 172, 615–633 (2007).
Google Scholar
Powalka, A. et al. The Next Generation Virgo Cluster Survey. XXV. Fiducial panchromatic colors of Virgo core globular clusters and their comparison to model predictions. Astrophys. J. Suppl. Ser. 227, 12 (2016).
Google Scholar
Akhlaghi, M. & Ichikawa, T. Noise-based detection and segmentation of nebulous objects. Astrophys. J. Suppl. Ser. 220, 1 (2015).
Google Scholar
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astrophys. J. Suppl. Ser. 117, 393–404 (1996).
Google Scholar
Johnston, K. V., Choi, P. I. & Guhathakurta, P. Interpreting the morphology of diffuse light around satellite galaxies. Astron. J. 124, 127–146 (2002).
Google Scholar
Bekki, K. & Freeman, K. C. Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young galactic disc. Mon. Not. R. Astron. Soc. 346, L11–L15 (2003).
Google Scholar
Jennings, Z. G. et al. NGC 3628-UCD1: a possible ω Cen analog embedded in a stellar stream. Astrophys. J. Lett. 812, L10 (2015).
Google Scholar
Hook, I. M. et al. The Gemini-North multi-object spectrograph: performance in imaging, long-Slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).
Google Scholar
Prochaska, J. X. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).
Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pac. 116, 138 (2004).
Google Scholar
Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017).
Google Scholar
Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191 (1987).
Google Scholar
Jordán, A. et al. The ACS Virgo Cluster Survey. II. data reduction procedures. Astrophys. J. Suppl. Ser. 154, 509–517 (2004).
Google Scholar