Strange IndiaStrange India


  • Wittmann, C. et al. Peculiar compact stellar systems in the Fornax cluster. Mon. Not. R. Astron. Soc. 459, 4450–4466 (2016).

    Article 

    Google Scholar 

  • Saifollahi, T. et al. Ultra-compact dwarfs beyond the centre of the Fornax galaxy cluster: hints of UCD formation in low-density environments. Mon. Not. R. Astron. Soc. 504, 3580–3609 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, C. et al. The Next Generation Virgo Cluster Survey. X. Properties of ultra-compact dwarfs in the M87, M49, and M60 regions. Astrophys. J. 812, 34 (2015).

    Article 

    Google Scholar 

  • Liu, C. et al. The Next Generation Virgo Cluster Survey. XXXIV. Ultracompact dwarf galaxies in the Virgo Cluster. Astrophys. J. Suppl. Ser. 250, 17 (2020).

    Article 

    Google Scholar 

  • Drinkwater, M. J. et al. A class of compact dwarf galaxies from disruptive processes in galaxy clusters. Nature 423, 519–521 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Misgeld, I. & Hilker, M. Families of dynamically hot stellar systems over 10 orders of magnitude in mass. Mon. Not. R. Astron. Soc. 414, 3699–3710 (2011).

    Article 

    Google Scholar 

  • Mieske, S., Hilker, M. & Misgeld, I. The specific frequencies of ultra-compact dwarf galaxies. Astron. Astrophys. 537, A3 (2012).

    Article 

    Google Scholar 

  • Evstigneeva, E. A. et al. Structural properties of ultra-compact dwarf galaxies in the Fornax and Virgo Clusters. Astron. J 136, 461–478 (2008).

    Article 

    Google Scholar 

  • Voggel, K., Hilker, M. & Richtler, T. Globular cluster clustering and tidal features around ultra-compact dwarf galaxies in the halo of NGC 1399. Astron. Astrophys. 586, A102 (2016).

    Article 

    Google Scholar 

  • Norris, M. A. et al. An extended star formation history in an ultra-compact dwarf. Mon. Not. R. Astron. Soc. 451, 3615–3626 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mieske, S. et al. On central black holes in ultra-compact dwarf galaxies. Astron. Astrophys. 558, A14 (2013).

    Article 

    Google Scholar 

  • Dumont, A. et al. A population of luminous globular clusters and stripped nuclei with elevated mass to light ratios around NGC 5128. Astrophys. J. 929, 147 (2022).

    Article 

    Google Scholar 

  • Seth, A. C. et al. A supermassive black hole in an ultra-compact dwarf galaxy. Nature 513, 398–400 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahn, C. P. et al. Detection of supermassive black holes in two Virgo ultra-compact dwarf galaxies. Astrophys. J. 839, 72 (2017).

    Article 

    Google Scholar 

  • Ahn, C. P. et al. The black hole in the most massive ultra-compact dwarf galaxy M59-UCD3. Astrophys. J. 858, 102 (2018).

    Article 

    Google Scholar 

  • Afanasiev, A. V. et al. A 3.5 million solar masses black hole in the centre of the ultracompact dwarf galaxy fornax UCD3. Mon. Not. R. Astron. Soc. 477, 4856–4865 (2018).

    Article 
    CAS 

    Google Scholar 

  • Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters. Astron. Astrophys. Rev. 28, 4 (2020).

    Article 

    Google Scholar 

  • Bekki, K., Couch, W. J., Drinkwater, M. J. & Shioya, Y. Galaxy threshing and the origin of ultra-compact dwarf galaxies in the Fornax cluster. Mon. Not. R. Astron. Soc. 344, 399–411 (2003).

    Article 

    Google Scholar 

  • Pfeffer, J. & Baumgardt, H. Ultra-compact dwarf galaxy formation by tidal stripping of nucleated dwarf galaxies. Mon. Not. R. Astron. Soc. 433, 1997–2005 (2013).

    Article 

    Google Scholar 

  • Wellons, S. et al. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0. Mon. Not. R. Astron. Soc. 456, 1030–1048 (2016).

    Article 
    CAS 

    Google Scholar 

  • Mihos, J. C. et al. Galaxies at the extremes: ultra-diffuse galaxies in the Virgo Cluster. Astrophys. J. Lett. 809, L21 (2015).

    Article 

    Google Scholar 

  • Bennet, P. et al. Evidence for ultra-diffuse galaxy “formation” through galaxy interactions. Astrophys. J. Lett. 866, L11 (2018).

    Article 

    Google Scholar 

  • Peñarrubia, J., Navarro, J. F., McConnachie, A. W. & Martin, N. F. The signature of galactic tides in local group dwarf spheroidals. Astrophys. J. 698, 222–232 (2009).

    Article 

    Google Scholar 

  • van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma Cluster. Astrophys. J. Lett. 798, L45 (2015).

    Article 

    Google Scholar 

  • Carleton, T. et al. The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Mon. Not. R. Astron. Soc. 485, 382–395 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H.-X. et al. The Next Generation Virgo Cluster Survey. VI. The kinematics of ultra-compact dwarfs and globular clusters in M87. Astrophys. J. 802, 30 (2015).

    Article 

    Google Scholar 

  • Ko, Y. et al. The Next Generation Virgo Cluster Survey. XXXIII. Stellar population gradients in the Virgo Cluster core globular cluster system. Astrophys. J. 931, 120 (2022).

    Article 

    Google Scholar 

  • Mihos, J. C. et al. The Burrell Schmidt deep Virgo survey: tidal debris, galaxy halos, and diffuse intracluster light in the Virgo Cluster. Astrophys. J. 834, 16 (2017).

    Article 

    Google Scholar 

  • Koch, A. et al. Threshing in action: the tidal disruption of a dwarf galaxy by the Hydra I Cluster. Astrophys. J. Lett. 755, L13 (2012).

    Article 

    Google Scholar 

  • Lim, S. et al. The Next Generation Virgo Cluster Survey. XXX. Ultra-diffuse galaxies and their globular cluster systems. Astrophys. J. 899, 69 (2020).

    Article 

    Google Scholar 

  • Pfeffer, J., Griffen, B. F., Baumgardt, H. & Hilker, M. Contribution of stripped nuclear clusters to globular cluster and ultra-compact dwarf galaxy populations. Mon. Not. R. Astron. Soc. 444, 3670–3683 (2014).

    Article 
    CAS 

    Google Scholar 

  • Gilmore, G. et al. The observed properties of dark matter on small spatial scales. Astrophys. J. 663, 948–959 (2007).

    Article 

    Google Scholar 

  • Peñarrubia, J., Navarro, J. F. & McConnachie, A. W. The tidal evolution of local group dwarf spheroidals. Astrophys. J. 673, 226–240 (2008).

    Article 

    Google Scholar 

  • Errani, R., Penarrubia, J. & Tormen, G. Constraining the distribution of dark matter in dwarf spheroidal galaxies with stellar tidal streams. Mon. Not. R. Astron. Soc. 449, L46–L50 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sales, L. V. et al. The formation of ultradiffuse galaxies in clusters. Mon. Not. R. Astron. Soc. 494, 1848–1858 (2020).

    Article 
    CAS 

    Google Scholar 

  • Montes, M. et al. The galaxy “missing dark matter” NGC 1052-DF4 is undergoing tidal disruption. Astrophys. J. 904, 114 (2020).

    Article 
    CAS 

    Google Scholar 

  • Keim, M. A. et al. Tidal distortions in NGC1052-DF2 and NGC1052-DF4: independent evidence for a lack of dark matter. Astrophys. J. 935, 160 (2022).

    Article 

    Google Scholar 

  • Bekki, K., Couch, W. J. & Drinkwater, M. J. Galaxy threshing and the formation of ultra-compact dwarf galaxies. Astrophys. J. Lett. 552, L105–L108 (2001).

    Article 

    Google Scholar 

  • Janz, J. et al. The AIMSS project – III. The stellar populations of compact stellar systems. Mon. Not. R. Astron. Soc. 456, 617–632 (2016).

    Article 
    CAS 

    Google Scholar 

  • Roediger, J. C. et al. The Next Generation Virgo Cluster Survey. XXIV. The red sequence to 106 L and comparisons with galaxy formation models. Astrophys. J. 836, 120 (2017).

    Article 

    Google Scholar 

  • Zhang, H.-X. et al. Stellar population properties of ultra-compact dwarfs in M87: a mass-metallicity correlation connecting low-metallicity globular clusters and compact ellipticals. Astrophys. J. 858, 37 (2018).

    Article 

    Google Scholar 

  • Strader, J. et al. Wide-field precision kinematics of the M87 globular cluster system. Astrophys. J. Suppl. Ser. 197, 33 (2011).

    Article 

    Google Scholar 

  • Romanowsky, A. J. et al. The ongoing assembly of a central cluster galaxy: phase-space substructures in the halo of M87. Astrophys. J. 748, 29 (2012).

    Article 

    Google Scholar 

  • Longobardi, A., Arnaboldi, M., Gerhard, O. & Mihos, J. C. The build-up of the cD halo of M 87: evidence for accretion in the last Gyr. Astron. Astrophys. 579, L3 (2015).

    Article 

    Google Scholar 

  • Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIII. The luminosity and mass function of galaxies in the core of the Virgo Cluster and the contribution from disrupted satellites. Astrophys. J. 824, 10 (2016).

    Article 

    Google Scholar 

  • Voggel, K. T. et al. The impact of stripped nuclei on the supermassive black hole number density in the local universe. Astrophys. J. 871, 159 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, C. et al. A discrete chemo-dynamical model of M87’s globular clusters: kinematics extending to 400 kpc. Mon. Not. R. Astron. Soc. 492, 2775–2795 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. XIV. The discovery of low-mass galaxies and a new galaxy catalog in the core of the Virgo Cluster. Astrophys. J. 890, 128 (2020).

    Article 

    Google Scholar 

  • Jordán, A. et al. The ACS Virgo Cluster Survey XVI. Selection procedure and catalogs of globular cluster candidates. Astrophys. J. Suppl. Ser. 180, 54–66 (2009).

    Article 

    Google Scholar 

  • Côté, P. et al. The ACS Virgo Cluster Survey. VIII. The nuclei of early-type galaxies. Astrophys. J. Suppl. Ser. 165, 57–94 (2006).

    Article 

    Google Scholar 

  • Ferrarese, L. et al. The Next Generation Virgo Cluster Survey. I. Introduction to the survey. Astrophys. J. Suppl. Ser. 200, 4 (2012).

    Article 

    Google Scholar 

  • Boulade, O. et al. MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera. Proc. SPIE https://doi.org/10.1117/12.459890 (2003).

  • Blakeslee, J. P. et al. The ACS Fornax Cluster Survey. V. Measurement and recalibration of surface brightness fluctuations and a precise value of the Fornax–Virgo relative distance. Astrophys. J. 694, 556–572 (2009).

    Article 

    Google Scholar 

  • Guérou, A. et al. The Next Generation Virgo Cluster Survey. XII. Stellar populations and kinematics of compact, low-mass early-type galaxies from Gemini GMOS-IFU spectroscopy. Astrophys. J. 804, 70 (2015).

    Article 

    Google Scholar 

  • Côté, P. et al. The ACS Virgo Cluster Survey. I. Introduction to the survey. Astrophys. J. Suppl. Ser. 153, 223–242 (2004).

    Article 

    Google Scholar 

  • Ford, H. C. et al. Advanced camera for the Hubble Space Telescope. Proc. SPIE https://doi.org/10.1117/12.324464 (1998).

  • Paudel, S., Lisker, T. & Janz, J. Nuclei of early-type dwarf galaxies: are they progenitors of ultra-compact dwarf galaxies? Astrophys. J. Lett. 724, L64–L68 (2010).

    Article 

    Google Scholar 

  • Mihos, J. C. et al. The distance and dynamical history of the virgo cluster ultradiffuse galaxy vcc 615. Astrophys. J. 924, 87 (2022).

    Article 

    Google Scholar 

  • Toloba, E. et al. The Next Generation Virgo Cluster Survey (NGVS). XXXV. First kinematical clues of overly-massive dark matter halos in several ultra-diffuse galaxies in the Virgo Cluster. Astrophys. J. 951, 77 (2023).

  • Sánchez-Janssen, R. et al. The Next Generation Virgo Cluster Survey. XXIII. Fundamentals of nuclear star clusters over seven decades in galaxy mass. Astrophys. J. 878, 18 (2019).

    Article 

    Google Scholar 

  • Peng, C. Y. et al. Detailed structural decomposition of galaxy images. Astron. J 124, 266–293 (2002).

    Article 

    Google Scholar 

  • Peng, C. Y. et al. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J 139, 2097–2129 (2010).

    Article 

    Google Scholar 

  • King, I. The structure of star clusters. I. an empirical density law. Astron. J 67, 471 (1962).

    Article 

    Google Scholar 

  • Sersic, J. L. Atlas de Galaxias Australes Vol. 1 (Observatorio Astronomico, 1968).

  • Bradley, L. et al. astropy/photutils: 1.0.0. Zenodo https://doi.org/10.5281/zenodo.4044744 (2020).

  • Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Häussler, B. et al. GEMS: galaxy fitting catalogs and testing parametric galaxy fitting codes: GALFIT and GIM2D. Astrophys. J. Suppl. Ser. 172, 615–633 (2007).

    Article 

    Google Scholar 

  • Powalka, A. et al. The Next Generation Virgo Cluster Survey. XXV. Fiducial panchromatic colors of Virgo core globular clusters and their comparison to model predictions. Astrophys. J. Suppl. Ser. 227, 12 (2016).

    Article 

    Google Scholar 

  • Akhlaghi, M. & Ichikawa, T. Noise-based detection and segmentation of nebulous objects. Astrophys. J. Suppl. Ser. 220, 1 (2015).

    Article 

    Google Scholar 

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astrophys. J. Suppl. Ser. 117, 393–404 (1996).

    Article 

    Google Scholar 

  • Johnston, K. V., Choi, P. I. & Guhathakurta, P. Interpreting the morphology of diffuse light around satellite galaxies. Astron. J. 124, 127–146 (2002).

    Article 

    Google Scholar 

  • Bekki, K. & Freeman, K. C. Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young galactic disc. Mon. Not. R. Astron. Soc. 346, L11–L15 (2003).

    Article 

    Google Scholar 

  • Jennings, Z. G. et al. NGC 3628-UCD1: a possible ω Cen analog embedded in a stellar stream. Astrophys. J. Lett. 812, L10 (2015).

    Article 

    Google Scholar 

  • Hook, I. M. et al. The Gemini-North multi-object spectrograph: performance in imaging, long-Slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    Article 

    Google Scholar 

  • Prochaska, J. X. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

  • Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pac. 116, 138 (2004).

    Article 

    Google Scholar 

  • Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017).

    Article 
    CAS 

    Google Scholar 

  • Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191 (1987).

    Article 

    Google Scholar 

  • Jordán, A. et al. The ACS Virgo Cluster Survey. II. data reduction procedures. Astrophys. J. Suppl. Ser. 154, 509–517 (2004).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *