Kramers, H. A. Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Amsterdam Akad. 33, 959–972 (1930).
Google Scholar
Wigner, E. P. Über die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gottingen, Math. Phys. Kl. 1932, 546–559 (1932).
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).
Google Scholar
Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).
Google Scholar
Bader, S. D. & Parkin, S. Spintronics. Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010).
Google Scholar
Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).
Google Scholar
Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Google Scholar
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Google Scholar
Franz, M. & Molenkamp, L. (eds) Topological Insulators Vol. 6 (Elsevier, 2013).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Google Scholar
Zang, J., Cros, V. & Hoffmann, A. (eds) Topology in Magnetism (Springer, 2018).
Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).
Google Scholar
Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).
Google Scholar
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Google Scholar
Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media 2nd edn (Pergamon Press, Oxford, 1984).
Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Google Scholar
Krempaský, J. et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B 94, 205111 (2016).
Google Scholar
Sante, D. D., Barone, P., Bertacco, R. & Picozzi, S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25, 509–513 (2013).
Google Scholar
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. 12, 031042 (2022).
Google Scholar
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. 12, 040501 (2022).
Google Scholar
Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).
Google Scholar
Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).
Google Scholar
Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971).
Google Scholar
Kunitomi, N., Hamaguchi, Y. & Anzai, S. Neutron diffraction study on manganese telluride. J. Phys. 25, 568–574 (1964).
Google Scholar
Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).
Google Scholar
Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).
Google Scholar
González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).
Google Scholar
Naka, M., Motome, Y. & Seo, H. Perovskite as a spin current generator. Phys. Rev. B 103, 125114 (2021).
Google Scholar
Ma, H.-Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).
Google Scholar
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Google Scholar
Samanta, K. et al. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 127, 213904 (2020).
Google Scholar
Naka, M. et al. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 102, 075112 (2020).
Google Scholar
Hayami, S. & Kusunose, H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 103, L180407 (2021).
Google Scholar
Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 118, e2108924118 (2021).
Google Scholar
Naka, M., Motome, Y. & Seo, H. Anomalous Hall effect in antiferromagnetic perovskites. Phys. Rev. B 106, 195149 (2022).
Google Scholar
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
Google Scholar
Bose, A. et al. Tilted spin current generated by an antiferromagnet. Nat. Electron. 5, 263–264 (2022).
Google Scholar
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).
Google Scholar
Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).
Google Scholar
Strocov, V. N. et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).
Google Scholar
Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).
Google Scholar
Ebert, H., Ködderitzsch, D. & Minár, J. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).
Google Scholar
Braun, J., Minár, J. & Ebert, H. Correlation, temperature and disorder: recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 740, 1–34 (2018).
Google Scholar
Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 043712 (2011).
Google Scholar
Kriegner, D. et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 96, 214418 (2017).
Google Scholar
Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).
Google Scholar
Braun, J. et al. Exploring the XPS limit in soft and hard x-ray angle-resolved photoemission using a temperature-dependent one-step theory. Phys. Rev. B 88, 205409 (2013).
Google Scholar
Hoesch, M. et al. Spin-polarized Fermi surface mapping. J. Electron. Spectrosc. Relat. Phenom. 124, 263–279 (2002).
Google Scholar
Kriegner, D., Wintersberger, E. & Stangl, J. Xrayutilities: a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors. J. Appl. Crystallogr. 46, 1162–1170 (2013).
Google Scholar
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
Google Scholar
Strocov, V. Photoemission response of 2D electron states. J. Electron. Spectrosc. Relat. Phenom. 229, 100–107 (2018).
Google Scholar
Powell, C. J. & Jablonski, A. Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Surf. Anal. 17, 170–176 (2011).
Google Scholar
Strocov, V. N. et al. Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).
Google Scholar
Weber, F. et al. Three-dimensional Fermi surface of 2H–NbSe2: implications for the mechanism of charge density waves. Phys. Rev. B 97, 235122 (2018).
Google Scholar
Schröter, N. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).
Google Scholar
Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).
Google Scholar
Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1996).
Google Scholar
Minár, J. Correlation effects in transition metals and their alloys studied using the fully self-consistent KKR-based LSDA + DMFT scheme. J. Phys. Condens. Matter 23, 253201 (2011).
Google Scholar
Lloyd, P. Wave propagation through an assembly of spheres: II. The density of single-particle eigenstates. Proc. Phys. Soc. 90, 207 (1967).
Google Scholar
Lloyd, P. & Smith, P. Multiple scattering theory in condensed materials. Adv. Phys. 21, 69–142 (1972).
Google Scholar