Strange IndiaStrange India


  • Kramers, H. A. Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Amsterdam Akad. 33, 959–972 (1930).

    CAS 

    Google Scholar 

  • Wigner, E. P. Über die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gottingen, Math. Phys. Kl. 1932, 546–559 (1932).

    Google Scholar 

  • Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bader, S. D. & Parkin, S. Spintronics. Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article 

    Google Scholar 

  • Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar 

  • Franz, M. & Molenkamp, L. (eds) Topological Insulators Vol. 6 (Elsevier, 2013).

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article 

    Google Scholar 

  • Zang, J., Cros, V. & Hoffmann, A. (eds) Topology in Magnetism (Springer, 2018).

  • Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article 

    Google Scholar 

  • Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article 
    ADS 

    Google Scholar 

  • Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media 2nd edn (Pergamon Press, Oxford, 1984).

  • Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Krempaský, J. et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B 94, 205111 (2016).

    Article 
    ADS 

    Google Scholar 

  • Sante, D. D., Barone, P., Bertacco, R. & Picozzi, S. Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25, 509–513 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. 12, 031042 (2022).

    Article 

    Google Scholar 

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. 12, 040501 (2022).

    Article 

    Google Scholar 

  • Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kunitomi, N., Hamaguchi, Y. & Anzai, S. Neutron diffraction study on manganese telluride. J. Phys. 25, 568–574 (1964).

    Article 
    CAS 

    Google Scholar 

  • Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Naka, M., Motome, Y. & Seo, H. Perovskite as a spin current generator. Phys. Rev. B 103, 125114 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ma, H.-Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).

    Google Scholar 

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samanta, K. et al. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 127, 213904 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Naka, M. et al. Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 102, 075112 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hayami, S. & Kusunose, H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 103, L180407 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. 118, e2108924118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naka, M., Motome, Y. & Seo, H. Anomalous Hall effect in antiferromagnetic perovskites. Phys. Rev. B 106, 195149 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bose, A. et al. Tilted spin current generated by an antiferromagnet. Nat. Electron. 5, 263–264 (2022).

    Article 

    Google Scholar 

  • Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Strocov, V. N. et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebert, H., Ködderitzsch, D. & Minár, J. Calculating condensed matter properties using the KKR-Green’s function method—recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

    Article 
    ADS 

    Google Scholar 

  • Braun, J., Minár, J. & Ebert, H. Correlation, temperature and disorder: recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 740, 1–34 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Zhang, P. et al. A precise method for visualizing dispersive features in image plots. Rev. Sci. Instrum. 82, 043712 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kriegner, D. et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 96, 214418 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Braun, J. et al. Exploring the XPS limit in soft and hard x-ray angle-resolved photoemission using a temperature-dependent one-step theory. Phys. Rev. B 88, 205409 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hoesch, M. et al. Spin-polarized Fermi surface mapping. J. Electron. Spectrosc. Relat. Phenom. 124, 263–279 (2002).

    Article 
    CAS 

    Google Scholar 

  • Kriegner, D., Wintersberger, E. & Stangl, J. Xrayutilities: a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectors. J. Appl. Crystallogr. 46, 1162–1170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Strocov, V. Photoemission response of 2D electron states. J. Electron. Spectrosc. Relat. Phenom. 229, 100–107 (2018).

    Article 
    CAS 

    Google Scholar 

  • Powell, C. J. & Jablonski, A. Surface sensitivity of Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Surf. Anal. 17, 170–176 (2011).

    Article 
    CAS 

    Google Scholar 

  • Strocov, V. N. et al. Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 086401 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Weber, F. et al. Three-dimensional Fermi surface of 2H–NbSe2: implications for the mechanism of charge density waves. Phys. Rev. B 97, 235122 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schröter, N. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Strocov, V. N. et al. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies. J. Synchrotron Radiat. 17, 631–643 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396–1396 (1996).

    Article 
    ADS 

    Google Scholar 

  • Minár, J. Correlation effects in transition metals and their alloys studied using the fully self-consistent KKR-based LSDA + DMFT scheme. J. Phys. Condens. Matter 23, 253201 (2011).

    Article 
    ADS 

    Google Scholar 

  • Lloyd, P. Wave propagation through an assembly of spheres: II. The density of single-particle eigenstates. Proc. Phys. Soc. 90, 207 (1967).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lloyd, P. & Smith, P. Multiple scattering theory in condensed materials. Adv. Phys. 21, 69–142 (1972).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *