Strange IndiaStrange India


  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ivanov, E. N., Tobar, M. E. & Woode, R. A. Ultra-low-noise microwave oscillator with advanced phase noise suppression system. IEEE Microw. Guided W. 6, 312–314 (1996).

    Article 

    Google Scholar 

  • Kinget, P. in Analog Circuit Design (eds Sansen, W., Juijsign, J. & van de Plassche, R.) 353–381 (Springer, 1999).

  • Razavi, B. Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. 56, 4–16 (2009).

    Article 
    MathSciNet 

    Google Scholar 

  • Rappaport, T. S., Murdock, J. N. & Gutierrez, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99, 1390–1436 (2011).

    Article 

    Google Scholar 

  • van Beek, J. T. M. & Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22, 013001 (2011).

    Article 

    Google Scholar 

  • Madjar, A. & Berceli, T. Microwave generation by optical techniques – a review. In Proc. Eur. Microw. Conf. (eds. Brazil, T. & Walker, J.) 1099–1102 (Horizon House Publications Ltd, 2006).

  • Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization – A Universal Concept in Nonlinear Sciences, Vol. 12 (Cambridge Univ. Press, 2001).

  • Jang, J. K. et al. Observation of Arnold tongues in coupled soliton Kerr frequency combs. Phys. Rev. Lett. 123, 153901 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rodrigues, C. C. et al. Optomechanical synchronization across multi-octave frequency spans. Nat. Commun. 12, 5625 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weng, W., Kaszubowska-Anandarajah, A., Liu, J., Anandarajah, P. M. & Kippenberg, T. J. Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Sci. Adv. 6, eaba2807 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsko, A. B. & Maleki, L. Noise conversion in Kerr comb RF photonic oscillators. J. Opt. Soc. Am. B 32, 232–240 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 3 (2017).

    Article 
    ADS 

    Google Scholar 

  • Bao, C. et al. Soliton repetition rate in a silicon-nitride microresonator. Opt. Lett. 42, 759–762 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Qi-Fan et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liu, F., Menyuk, C. R. & Chembo, Y. K. A stochastic approach to phase noise analysis for microwaves generated with Kerr optical frequency combs. Commun. Phys. 6, 117 (2023).

    Article 
    CAS 

    Google Scholar 

  • Coillet, Aurélien & Chembo, Y. On the robustness of phase locking in Kerr optical frequency combs. Opt. Lett. 39, 1529–1532 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kim, BokYoung et al. Synchronization of nonsolitonic Kerr combs. Sci. Adv. 7, eabi4362 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).

    Article 
    ADS 

    Google Scholar 

  • Coen, Stéphane & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Godey, C., Balakireva, I. V., Coillet, Aurélien & Chembo, Y. K. Stability analysis of the spatiotemporal lugiato-lefever model for kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kwon, D. et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep. 7, 1–9 (2017).

    Article 

    Google Scholar 

  • Tian, H. et al. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Opt. Express 28, 9232–9243 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Gorodetksy, M. L., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. J. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).

    Article 
    ADS 

    Google Scholar 

  • Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483–485 (2002).

    Article 
    ADS 

    Google Scholar 

  • Zhao, Y., McNulty, K. J., Lipson, M. & Gaeta, A. L. Active tuning of the microresonator coupling condition with coupled rings. In Conference on Lasers and Electro-Optics (eds. Gan, Q., Saraceno, C., Da Ros, F. & Vasilyev, S.) SW4L.8 (Optica Publishing Group, 2023).

  • Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weng, W. et al. Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls. Phys. Rev. A 104, 023511 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guha, B., Cardenas, J. & Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Djordjevic, S. S. et al. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 21, 13958–13968 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rodrigues, J. R. et al. SiN-based waveguides with ultra-low thermo-optic effect. In Conference on Lasers and Electro-Optics (eds. Prasankumar, R., Tanabe, T., Brès, C. S. & Paiella, R.) SM4G.3 (Optica Publishing Group, 2022).

  • Raghunathan, V. et al. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express 18, 17631–17639 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kalubovilage, M., Endo, M. & Schibli, T. R. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser. Opt. Express 28, 25400–25409 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kalubovilage, M., Endo, M. & Schibli, T. R. X-Band photonic microwaves with phase noise below -180 dBc/Hz using a free-running monolithic comb. Opt. Express 30, 11266–11274 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).

    Article 
    ADS 

    Google Scholar 

  • Jang, J. K. et al. Conversion efficiency of soliton Kerr combs. Opt. Lett. 46, 3657–3660 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kondratiev, N., Lobanov, V., Dmitriev, N., Cordette, S. & Bilenko, I. Analysis of parameter combinations for optimal soliton microcomb generation efficiency in a simple single-cavity scheme. Phys. Rev. A 107, 063508 (2023).

  • Sun, S. et al. Integrated optical frequency division for microwave and mmwave generation. Nature https://doi.org/10.1038/s41586-024-07057-0 (2024).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *