Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Google Scholar
Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).
Google Scholar
Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).
Google Scholar
Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
Google Scholar
Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).
Google Scholar
Ivanov, E. N., Tobar, M. E. & Woode, R. A. Ultra-low-noise microwave oscillator with advanced phase noise suppression system. IEEE Microw. Guided W. 6, 312–314 (1996).
Google Scholar
Kinget, P. in Analog Circuit Design (eds Sansen, W., Juijsign, J. & van de Plassche, R.) 353–381 (Springer, 1999).
Razavi, B. Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. 56, 4–16 (2009).
Google Scholar
Rappaport, T. S., Murdock, J. N. & Gutierrez, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99, 1390–1436 (2011).
Google Scholar
van Beek, J. T. M. & Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22, 013001 (2011).
Google Scholar
Madjar, A. & Berceli, T. Microwave generation by optical techniques – a review. In Proc. Eur. Microw. Conf. (eds. Brazil, T. & Walker, J.) 1099–1102 (Horizon House Publications Ltd, 2006).
Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).
Google Scholar
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization – A Universal Concept in Nonlinear Sciences, Vol. 12 (Cambridge Univ. Press, 2001).
Jang, J. K. et al. Observation of Arnold tongues in coupled soliton Kerr frequency combs. Phys. Rev. Lett. 123, 153901 (2019).
Google Scholar
Rodrigues, C. C. et al. Optomechanical synchronization across multi-octave frequency spans. Nat. Commun. 12, 5625 (2021).
Google Scholar
Weng, W., Kaszubowska-Anandarajah, A., Liu, J., Anandarajah, P. M. & Kippenberg, T. J. Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Sci. Adv. 6, eaba2807 (2020).
Google Scholar
Matsko, A. B. & Maleki, L. Noise conversion in Kerr comb RF photonic oscillators. J. Opt. Soc. Am. B 32, 232–240 (2015).
Google Scholar
Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 3 (2017).
Google Scholar
Bao, C. et al. Soliton repetition rate in a silicon-nitride microresonator. Opt. Lett. 42, 759–762 (2017).
Google Scholar
Yang, Qi-Fan et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).
Google Scholar
Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).
Google Scholar
Liu, F., Menyuk, C. R. & Chembo, Y. K. A stochastic approach to phase noise analysis for microwaves generated with Kerr optical frequency combs. Commun. Phys. 6, 117 (2023).
Google Scholar
Coillet, Aurélien & Chembo, Y. On the robustness of phase locking in Kerr optical frequency combs. Opt. Lett. 39, 1529–1532 (2014).
Google Scholar
Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).
Google Scholar
Kim, BokYoung et al. Synchronization of nonsolitonic Kerr combs. Sci. Adv. 7, eabi4362 (2021).
Google Scholar
Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).
Google Scholar
Coen, Stéphane & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).
Google Scholar
Godey, C., Balakireva, I. V., Coillet, Aurélien & Chembo, Y. K. Stability analysis of the spatiotemporal lugiato-lefever model for kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).
Google Scholar
Kwon, D. et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Tian, H. et al. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Opt. Express 28, 9232–9243 (2020).
Google Scholar
Gorodetksy, M. L., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. J. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).
Google Scholar
Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).
Google Scholar
Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).
Google Scholar
Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
Google Scholar
Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483–485 (2002).
Google Scholar
Zhao, Y., McNulty, K. J., Lipson, M. & Gaeta, A. L. Active tuning of the microresonator coupling condition with coupled rings. In Conference on Lasers and Electro-Optics (eds. Gan, Q., Saraceno, C., Da Ros, F. & Vasilyev, S.) SW4L.8 (Optica Publishing Group, 2023).
Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).
Google Scholar
Weng, W. et al. Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls. Phys. Rev. A 104, 023511 (2021).
Google Scholar
Guha, B., Cardenas, J. & Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013).
Google Scholar
Djordjevic, S. S. et al. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 21, 13958–13968 (2013).
Google Scholar
Rodrigues, J. R. et al. SiN-based waveguides with ultra-low thermo-optic effect. In Conference on Lasers and Electro-Optics (eds. Prasankumar, R., Tanabe, T., Brès, C. S. & Paiella, R.) SM4G.3 (Optica Publishing Group, 2022).
Raghunathan, V. et al. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express 18, 17631–17639 (2010).
Google Scholar
Kalubovilage, M., Endo, M. & Schibli, T. R. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser. Opt. Express 28, 25400–25409 (2020).
Google Scholar
Kalubovilage, M., Endo, M. & Schibli, T. R. X-Band photonic microwaves with phase noise below -180 dBc/Hz using a free-running monolithic comb. Opt. Express 30, 11266–11274 (2022).
Google Scholar
Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).
Google Scholar
Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).
Google Scholar
Jang, J. K. et al. Conversion efficiency of soliton Kerr combs. Opt. Lett. 46, 3657–3660 (2021).
Google Scholar
Kondratiev, N., Lobanov, V., Dmitriev, N., Cordette, S. & Bilenko, I. Analysis of parameter combinations for optimal soliton microcomb generation efficiency in a simple single-cavity scheme. Phys. Rev. A 107, 063508 (2023).
Sun, S. et al. Integrated optical frequency division for microwave and mmwave generation. Nature https://doi.org/10.1038/s41586-024-07057-0 (2024).