Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Google Scholar
Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).
Google Scholar
Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).
Google Scholar
Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).
Google Scholar
Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).
Google Scholar
Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).
Google Scholar
Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).
Google Scholar
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).
Google Scholar
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Google Scholar
Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. D. 53, 363001 (2020).
Google Scholar
Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).
Google Scholar
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Google Scholar
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Google Scholar
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).
Google Scholar
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).
Google Scholar
Ikeda, S. et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).
Google Scholar
Engel, B. N. et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005).
Google Scholar
Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).
Google Scholar
Zeissler, K. et al. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nat. Nanotechnol. 13, 1161–1166 (2018).
Google Scholar
Hsu, P.-J. et al. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 12, 123–126 (2017).
Google Scholar
Li, S. et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Sci. Bull. 67, 691–699 (2022).
Google Scholar
Guang, Y. et al. Electrical detection of magnetic skyrmions in a magnetic tunnel junction. Adv. Electron. Mater. 9, 2200570 (2023).
Google Scholar
Kasai, S., Sugimoto, S., Nakatani, Y., Ishikawa, R. & Takahashi, Y. K. Voltage-controlled magnetic skyrmions in magnetic tunnel junctions. Appl. Phys. Expr. https://doi.org/10.7567/1882-0786/ab2baa (2019).
Penthorn, N. E., Hao, X., Wang, Z., Huai, Y. & Jiang, H. W. Experimental observation of single skyrmion signatures in a magnetic tunnel junction. Phys. Rev. Lett. 122, 257201 (2019).
Google Scholar
Kim, D.-H., Park, K.-W. & Park, B.-G. Enhanced tunnel magnetoresistance and electric-field effect in CoFeB/MgO/CoFeB perpendicular tunnel junctions with W underlayer. Curr. Appl. Phys. 17, 962–965 (2017).
Google Scholar
Chen, X. et al. Unveiling the emergent traits of chiral spin textures in magnetic multilayers. Adv. Sci. 9, 2103978 (2022).
Google Scholar
Han, G. et al. Control of offset field and pinning stability in perpendicular magnetic tunnelling junctions with synthetic antiferromagnetic coupling multilayer. J. Appl. Phys. 117, 17B515 (2015).
Google Scholar
Ho, P. et al. Geometrically tailored skyrmions at zero magnetic field in multilayered nanostructures. Phys. Rev. Appl. https://doi.org/10.1103/PhysRevApplied.11.024064 (2019).
Chen, H., Bouckaert, W. & Majetich, S. A. Tunnel magnetoresistance detection of skyrmions. J. Magn. Magn. Mater. 541, 168552 (2022).
Google Scholar
Zhang, X. et al. Skyrmions in magnetic tunnel junctions. ACS Appl. Mater. Interfaces 10, 16887–16892 (2018).
Google Scholar
Davies, J. E. et al. Magnetization reversal of Co/Pt multilayers: microscopic origin of high-field magnetic irreversibility. Phys. Rev. B 70, 224434 (2004).
Google Scholar
Tan, A. K. C. et al. Skyrmion generation from irreversible fission of stripes in chiral multilayer films. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.4.114419 (2020).
Pomeroy, J. M., White, T. C., Grube, H., Read, J. C. & Davies, J. E. Magnetoresistance based first-order reversal curve analysis of magnetic tunnel junctions. Appl. Phys. Lett. https://doi.org/10.1063/1.3175723 (2009).
Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).
Google Scholar
Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. 54, 9300204 (2018).
Google Scholar
Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582–588 (2018).
Google Scholar
Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy. Nat. Electron. 1, 288–296 (2018).
Google Scholar
Finizio, S. et al. Deterministic field-free skyrmion nucleation at a nanoengineered injector device. Nano Lett. 19, 7246–7255 (2019).
Google Scholar
Bhattacharya, D. et al. Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. Nat. Electron. 3, 539–545 (2020).
Google Scholar
Niranjan, M. K., Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96, 222504 (2010).
Google Scholar
Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).
Google Scholar
Grezes, C. et al. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108, 012403 (2016).
Google Scholar
Zhang, D. et al. Bipolar electric-field switching of perpendicular magnetic tunnel junctions through voltage-controlled exchange coupling. Nano Lett. 22, 622–629 (2022).
Google Scholar
Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).
Google Scholar
Kateel, V. et al. Field-free spin–orbit torque driven switching of perpendicular magnetic tunnel junction through bending current. Nano Lett. 23, 5482–5489 (2023).
Google Scholar
Lim, S. T., Tran, M., Chenchen, J. W., Ying, J. F. & Han, G. Effect of different seed layers with varying Co and Pt thicknesses on the magnetic properties of Co/Pt multilayers. J. Appl. Phys. 117, 17A731 (2015).
Google Scholar
Chen, X. et al. Tailoring zero‐field magnetic skyrmions in chiral multilayers by a duet of interlayer exchange couplings. Adv. Funct. Mater. 33, 2304560 (2023).
Toh, A. K. J. et al. Stability and character of zero field skyrmionic states in hybrid magnetic multilayer nanodots. Preprint at https://arxiv.org/abs/2312.05801 (2023).
Zeissler, K. et al. Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks. Sci. Rep. 7, 15125 (2017).
Google Scholar
Tan, A. K. C. et al. Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices. Nat. Commun. 12, 4252 (2021).
Google Scholar
Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
Google Scholar
Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).
Google Scholar
Li, X. et al. Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB|MgO interface. Appl. Phys. Lett. 110, 052401 (2017).
Google Scholar
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. https://doi.org/10.1063/1.4899186 (2014).
Bisotti, M.-A. et al. Fidimag – a finite difference atomistic and micromagnetic simulation package. J. Open Res. Softw. https://doi.org/10.5334/jors.223 (2018).
Cortés-Ortuño, D. et al. Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7, 4060 (2017).
Google Scholar