Strange IndiaStrange India


  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article 

    Google Scholar 

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    CAS 

    Google Scholar 

  • Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. D. 53, 363001 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article 

    Google Scholar 

  • Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article 
    CAS 

    Google Scholar 

  • Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ikeda, S. et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engel, B. N. et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005).

    Article 

    Google Scholar 

  • Maccariello, D. et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nat. Nanotechnol. 13, 233–237 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeissler, K. et al. Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nat. Nanotechnol. 13, 1161–1166 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hsu, P.-J. et al. Electric-field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 12, 123–126 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Experimental demonstration of skyrmionic magnetic tunnel junction at room temperature. Sci. Bull. 67, 691–699 (2022).

    Article 
    CAS 

    Google Scholar 

  • Guang, Y. et al. Electrical detection of magnetic skyrmions in a magnetic tunnel junction. Adv. Electron. Mater. 9, 2200570 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kasai, S., Sugimoto, S., Nakatani, Y., Ishikawa, R. & Takahashi, Y. K. Voltage-controlled magnetic skyrmions in magnetic tunnel junctions. Appl. Phys. Expr. https://doi.org/10.7567/1882-0786/ab2baa (2019).

  • Penthorn, N. E., Hao, X., Wang, Z., Huai, Y. & Jiang, H. W. Experimental observation of single skyrmion signatures in a magnetic tunnel junction. Phys. Rev. Lett. 122, 257201 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D.-H., Park, K.-W. & Park, B.-G. Enhanced tunnel magnetoresistance and electric-field effect in CoFeB/MgO/CoFeB perpendicular tunnel junctions with W underlayer. Curr. Appl. Phys. 17, 962–965 (2017).

    Article 

    Google Scholar 

  • Chen, X. et al. Unveiling the emergent traits of chiral spin textures in magnetic multilayers. Adv. Sci. 9, 2103978 (2022).

    Article 
    CAS 

    Google Scholar 

  • Han, G. et al. Control of offset field and pinning stability in perpendicular magnetic tunnelling junctions with synthetic antiferromagnetic coupling multilayer. J. Appl. Phys. 117, 17B515 (2015).

    Article 

    Google Scholar 

  • Ho, P. et al. Geometrically tailored skyrmions at zero magnetic field in multilayered nanostructures. Phys. Rev. Appl. https://doi.org/10.1103/PhysRevApplied.11.024064 (2019).

  • Chen, H., Bouckaert, W. & Majetich, S. A. Tunnel magnetoresistance detection of skyrmions. J. Magn. Magn. Mater. 541, 168552 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Skyrmions in magnetic tunnel junctions. ACS Appl. Mater. Interfaces 10, 16887–16892 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davies, J. E. et al. Magnetization reversal of Co/Pt multilayers: microscopic origin of high-field magnetic irreversibility. Phys. Rev. B 70, 224434 (2004).

    Article 

    Google Scholar 

  • Tan, A. K. C. et al. Skyrmion generation from irreversible fission of stripes in chiral multilayer films. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.4.114419 (2020).

  • Pomeroy, J. M., White, T. C., Grube, H., Read, J. C. & Davies, J. E. Magnetoresistance based first-order reversal curve analysis of magnetic tunnel junctions. Appl. Phys. Lett. https://doi.org/10.1063/1.3175723 (2009).

  • Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. 54, 9300204 (2018).

    Article 

    Google Scholar 

  • Wang, M. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat. Electron. 1, 582–588 (2018).

    Article 

    Google Scholar 

  • Woo, S. et al. Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy. Nat. Electron. 1, 288–296 (2018).

    Article 

    Google Scholar 

  • Finizio, S. et al. Deterministic field-free skyrmion nucleation at a nanoengineered injector device. Nano Lett. 19, 7246–7255 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhattacharya, D. et al. Creation and annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy. Nat. Electron. 3, 539–545 (2020).

    Article 

    Google Scholar 

  • Niranjan, M. K., Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96, 222504 (2010).

    Article 

    Google Scholar 

  • Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    Article 
    CAS 

    Google Scholar 

  • Grezes, C. et al. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108, 012403 (2016).

    Article 

    Google Scholar 

  • Zhang, D. et al. Bipolar electric-field switching of perpendicular magnetic tunnel junctions through voltage-controlled exchange coupling. Nano Lett. 22, 622–629 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kateel, V. et al. Field-free spin–orbit torque driven switching of perpendicular magnetic tunnel junction through bending current. Nano Lett. 23, 5482–5489 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. T., Tran, M., Chenchen, J. W., Ying, J. F. & Han, G. Effect of different seed layers with varying Co and Pt thicknesses on the magnetic properties of Co/Pt multilayers. J. Appl. Phys. 117, 17A731 (2015).

    Article 

    Google Scholar 

  • Chen, X. et al. Tailoring zero‐field magnetic skyrmions in chiral multilayers by a duet of interlayer exchange couplings. Adv. Funct. Mater. 33, 2304560 (2023).

    Google Scholar 

  • Toh, A. K. J. et al. Stability and character of zero field skyrmionic states in hybrid magnetic multilayer nanodots. Preprint at https://arxiv.org/abs/2312.05801 (2023).

  • Zeissler, K. et al. Pinning and hysteresis in the field dependent diameter evolution of skyrmions in Pt/Co/Ir superlattice stacks. Sci. Rep. 7, 15125 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, A. K. C. et al. Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices. Nat. Commun. 12, 4252 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emori, S., Bauer, U., Ahn, S. M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB|MgO interface. Appl. Phys. Lett. 110, 052401 (2017).

    Article 

    Google Scholar 

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. https://doi.org/10.1063/1.4899186 (2014).

  • Bisotti, M.-A. et al. Fidimag – a finite difference atomistic and micromagnetic simulation package. J. Open Res. Softw. https://doi.org/10.5334/jors.223 (2018).

  • Cortés-Ortuño, D. et al. Thermal stability and topological protection of skyrmions in nanotracks. Sci. Rep. 7, 4060 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *