Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).
Google Scholar
Koumura, N., Zijistra, R. W. J., Delden, R. A. V., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).
Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).
Google Scholar
Hernandez, J. V., Kay, E. R. & Leigh, D. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).
Google Scholar
Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).
Google Scholar
Saywell, A. et al. Light-induced translation of motorized molecules on a surface. ACS Nano 10, 10945–10952 (2016).
Google Scholar
Coronado, E., Gavina, P. & Tatay, S. Catenanes and threaded systems: from solution to surfaces. Chem. Soc. Rev. 38, 1674–1689 (2009).
Google Scholar
Schwarz, F. B., Heinrich, T., Lippitz, A., Unger, W. E. S. & Schalley, C. A. A photoswitchable rotaxane operating in monolayers on solid support. Chem. Commun. 52, 14458–14461 (2016).
Google Scholar
Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–206 (2010).
Google Scholar
Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotechnol. 6, 166–169 (2011).
Google Scholar
Tolman, R. C. The principle of microscopic reversibility. Proc. Natl Acad. Sci. USA 11, 436–439 (1925).
Google Scholar
Astumian, R. D. & Hänggi, P. Brownian motors. Phys. Today 55, 33–39 (2002).
Google Scholar
Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–77 (2010).
Google Scholar
Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Edn 56, 11060–11078 (2017).
Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches and machines (Nobel Lecture). Angew. Chem. Int. Edn 56, 11094–11125 (2017).
Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).
Google Scholar
Astumian, R. D. & Derényi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).
Google Scholar
Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).
Google Scholar
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Google Scholar
Brasen, W. R., Holmquist, H. E. & Benson, R. E. N,N’-disubstituted-1-amino-7-imino-1,3,5-cycloheptatrienes, a non-classical aromatic system. J. Am. Chem. Soc. 83, 3125–3135 (1961).
Claramunt, R. M. et al. Solid-state structure and tautomerism of 2-aminotroponimines studied by X-ray crystallography and multinuclear NMR spectroscopy. Eur. J. Org. Chem. 2004, 4452–4466 (2004).
Schunack, M. et al. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88, 156102 (2002).
Google Scholar
Alemani, M. et al. Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 402, 180–185 (2005).
Google Scholar
Simpson, G. J., Garcia-Lopez, V., Petermeier, P., Grill, L. & Tour, J. M. How to build and race a fast nanocar. Nat. Nanotechnol. 12, 604–606 (2017).
Google Scholar
Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).
Google Scholar
Barth, J. V. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000).
Google Scholar
Pawin, G. et al. Surface diffusive motion in a periodic and asymmetric potential. J. Am. Chem. Soc. 130, 15244–15245 (2008).
Google Scholar
Kumagai, T. et al. Thermally- and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013).
Google Scholar
Stolz, S., Gröning, O., Prinz, J., Brune, H. & Widmer, R. Molecular motor crossing the frontier of classical to quantum tunneling motion. Proc. Natl Acad. Sci. USA 117, 14838–14842 (2020).
Google Scholar
Torres, J. A. G., Finley, K. L., Früchtl, H. A., Webb, P. B. & Schaub, R. Strong substrate mediation of attractive lateral interactions of CO on Cu(110). Langmuir 35, 608–614 (2019).
Google Scholar
Peng, C. S. et al. Nanometer-resolution long-term tracking of single cargos reveals dynein motor mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2022.1101.1105.475120 (2022).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).
Google Scholar
Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).
Google Scholar
Berland, K. & Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89, 035412 (2014).
Google Scholar
Gharaee, L., Erhart, P. & Hyldgaard, P. Finite-temperature properties of nonmagnetic transition metals: comparison of the performance of constraint-based semilocal and nonlocal functionals. Phys. Rev. B 95, 085147 (2017).
Google Scholar
Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).
Google Scholar
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Google Scholar
Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2007).
Google Scholar
Smidstrup, S., Pedersen, A., Stokbro, K. & Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 140, 214106 (2014).
Google Scholar
Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).
Google Scholar
Lorente, N. & Persson, M. Theoretical aspects of tunneling-current-induced bond excitation and breaking at surfaces. Faraday Discuss. 117, 277–290 (2000).
Google Scholar