Strange India All Strange Things About India and world


  • Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koumura, N., Zijistra, R. W. J., Delden, R. A. V., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

  • Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernandez, J. V., Kay, E. R. & Leigh, D. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saywell, A. et al. Light-induced translation of motorized molecules on a surface. ACS Nano 10, 10945–10952 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coronado, E., Gavina, P. & Tatay, S. Catenanes and threaded systems: from solution to surfaces. Chem. Soc. Rev. 38, 1674–1689 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwarz, F. B., Heinrich, T., Lippitz, A., Unger, W. E. S. & Schalley, C. A. A photoswitchable rotaxane operating in monolayers on solid support. Chem. Commun. 52, 14458–14461 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–206 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotechnol. 6, 166–169 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tolman, R. C. The principle of microscopic reversibility. Proc. Natl Acad. Sci. USA 11, 436–439 (1925).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Astumian, R. D. & Hänggi, P. Brownian motors. Phys. Today 55, 33–39 (2002).

    Article 

    Google Scholar 

  • Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–77 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feringa, B. L. The art of building small: from molecular switches to motors (Nobel Lecture). Angew. Chem. Int. Edn 56, 11060–11078 (2017).

  • Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches and machines (Nobel Lecture). Angew. Chem. Int. Edn 56, 11094–11125 (2017).

  • Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Astumian, R. D. & Derényi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brasen, W. R., Holmquist, H. E. & Benson, R. E. N,N’-disubstituted-1-amino-7-imino-1,3,5-cycloheptatrienes, a non-classical aromatic system. J. Am. Chem. Soc. 83, 3125–3135 (1961).

  • Claramunt, R. M. et al. Solid-state structure and tautomerism of 2-aminotroponimines studied by X-ray crystallography and multinuclear NMR spectroscopy. Eur. J. Org. Chem. 2004, 4452–4466 (2004).

  • Schunack, M. et al. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88, 156102 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alemani, M. et al. Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 402, 180–185 (2005).

    Article 
    CAS 

    Google Scholar 

  • Simpson, G. J., Garcia-Lopez, V., Petermeier, P., Grill, L. & Tour, J. M. How to build and race a fast nanocar. Nat. Nanotechnol. 12, 604–606 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article 
    CAS 

    Google Scholar 

  • Barth, J. V. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–149 (2000).

    Article 
    CAS 

    Google Scholar 

  • Pawin, G. et al. Surface diffusive motion in a periodic and asymmetric potential. J. Am. Chem. Soc. 130, 15244–15245 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumagai, T. et al. Thermally- and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Stolz, S., Gröning, O., Prinz, J., Brune, H. & Widmer, R. Molecular motor crossing the frontier of classical to quantum tunneling motion. Proc. Natl Acad. Sci. USA 117, 14838–14842 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torres, J. A. G., Finley, K. L., Früchtl, H. A., Webb, P. B. & Schaub, R. Strong substrate mediation of attractive lateral interactions of CO on Cu(110). Langmuir 35, 608–614 (2019).

    Article 

    Google Scholar 

  • Peng, C. S. et al. Nanometer-resolution long-term tracking of single cargos reveals dynein motor mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2022.1101.1105.475120 (2022).

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar 

  • Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Berland, K. & Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 89, 035412 (2014).

    Article 

    Google Scholar 

  • Gharaee, L., Erhart, P. & Hyldgaard, P. Finite-temperature properties of nonmagnetic transition metals: comparison of the performance of constraint-based semilocal and nonlocal functionals. Phys. Rev. B 95, 085147 (2017).

    Article 

    Google Scholar 

  • Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article 
    CAS 

    Google Scholar 

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar 

  • Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2007).

    Article 

    Google Scholar 

  • Smidstrup, S., Pedersen, A., Stokbro, K. & Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 140, 214106 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    Article 
    CAS 

    Google Scholar 

  • Lorente, N. & Persson, M. Theoretical aspects of tunneling-current-induced bond excitation and breaking at surfaces. Faraday Discuss. 117, 277–290 (2000).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *