Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).
Google Scholar
Vaks, A. et al. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35, 831–834 (2007).
Google Scholar
Smith, E. I. et al. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature 555, 511–515 (2018). (2018).
Google Scholar
Loewy, S. L. et al. Improved accuracy of U-series and radiocarbon dating of ostrich eggshell using a sample preparation method based on microstructure and geochemistry: a study from the Middle Stone Age of northwestern Ethiopia. Quat. Sci. Rev. 247, 106525 (2020).
Google Scholar
Hughes, S. S. Getting to the point: evolutionary change in prehistoric weaponry. J. Archaeol. Method Theory 5, 345–408 (1998).
Google Scholar
Sisk, M. L. & Shea, J. J. The African origin of complex projectile technology: an analysis using tip cross-sectional area and perimeter. Int. J. Evol. Biol. https://doi.org/10.4061/2011/968012 (2011).
Thomas, D. H. Arrowheads and atlatl darts—how stones got shaft. Am. Antiquity 43, 461–472 (1978).
Google Scholar
Shott, M. J. Stones and shafts redux: the metric discrimination of chipped-stone dart and arrow points. Amer. Antiq. 62, 86–101 (1997).
Google Scholar
Cheshier, J. & Kelly, R. L. Projectile point shape and durability: the effect of thickness:length. Am. Antiq. 71, 353–363 (2006).
Google Scholar
Sahle, Y. & Brooks, A. S. Assessment of complex projectiles in the early Late Pleistocene at Aduma, Ethiopia. PLoS ONE 14, e0216716 (2019).
Google Scholar
Pargeter, J. & Shea, J. J. Going big versus going small: lithic miniaturization in hominin lithic 507 technology. Evol. Anthropol. 28, 72–85 (2019).
Google Scholar
Coppe, J. & Rots, V. Focus on the target. The importance of a transparent fracture terminology for understanding projectile points and projecting modes. J. Archaeol. Sci. 12, 109–123 (2017).
Metz, L., Lewis, J. E. & Slimak, L. Bow-and-arrow technology of the first modern humans in Europe 54,000 years ago at Mandrin, France. Sci. Adv. 9, eadd4675 (2023).
Google Scholar
Lombard, M. & Shea, J. J. Did Pleistocene Africans use the spearthrower-and-dart? Evol. Anthropol. 30, 307–315 (2021).
Google Scholar
Brown, K. S. et al. An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature 491, 590–593 (2012).
Google Scholar
Baker, S. W. The Nile Tributaries of Abyssinia and the Sword Hunters of the Hamran Arabs (Macmillan, 1867).
Assefa, Z. Faunal remains from Porc-Epic: paleoecological and zooarchaeological investigations from a Middle Stone Age site in southeastern Ethiopia. J. Hum. Evol. 51, 50–75 (2006).
Google Scholar
Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).
Google Scholar
Capaldo, S. D. Simulating the formation of dual-patterned archaeofaunal assemblages with experimental control samples. J. Archaeol. Sci. 25, 311–330 (1998).
Google Scholar
Brooks, A. S. et al. Dating and context of three Middle Stone Age sites with bone points in the Upper Semliki Valley, Zaire. Science 268, 548–553 (1995).
Google Scholar
Kappelman, J. et al. Another unique river: a consideration of some of the characteristics of the trunk tributaries of the Nile River in northwestern Ethiopia in relationship to their aquatic food resources. J. Hum. Evol. 77, 117–131 (2014).
Google Scholar
Willis, L. M., Eren, M. I. & Rick, T. C. Does butchering fish leave cut marks? J. Archaeol. Sci. 35, 1438–1444 (2008).
Google Scholar
Cerling, T. E., Harris, J. M. & Passey, B. H. Diets of East African Bovidae based on stable isotope analysis. J. Mammal. 84, 456–470 (2003).
Google Scholar
Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B, 170–193 (1999).
Google Scholar
Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).
Google Scholar
Faith, J. T. et al. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East. Africa. J. Hum Evol. 83, 28–45 (2015).
Google Scholar
Robinson, J. R., Rowan, J., Faith, J. T. & Fleagle, J. G. Paleoenvironmental change in the late Middle Pleistocene—Holocene Kibish Formation, southern Ethiopia: evidence from ungulate isotopic ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 50–59 (2016).
Google Scholar
Robinson, J. R. Thinking locally: environmental reconstruction of Middle and Later Stone Age archaeological sites in Ethiopia, Kenya, and Zambia based on ungulate stable isotopes. J. Hum. Evol. 106, 19–37 (2017).
Google Scholar
Garrett, N. D. et al. Stable isotope paleoecology of Late Pleistocene Middle Stone Age humans from the Lake Victoria basin, Kenya. J. Hum. Evol. 82, 1–14 (2015).
Google Scholar
Roberts, P. et al. Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in ‘Green Arabia’. Nat. Ecol. Evol. 2, 1871–1878 (2018).
Google Scholar
Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).
Google Scholar
Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. USA 114, 7331–7336 (2017).
Google Scholar
Larned, S. T., Datry, T., Arscott, D. B. & Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Biol. 55, 717–738 (2010).
Google Scholar
Tabor, N. J. et al. Stable isotope compositions of the Shinfa River, northwestern Ethiopian lowlands: implications for Middle Stone Age human environments. Geol. Soc. Spec. Publ. 507, 225 (2021).
Google Scholar
Green, D. R. et al. Quantitative reconstruction of seasonality from stable isotopes in teeth. Geochim. Cosmochim. Acta 235, 483–504 (2018).
Google Scholar
Hermance, J. F. Historical Variability of Rainfall in the African East Sahel of Sudan Implications for Development (Springer, 2014).
Niespolo, E. M. et al. Carbon, nitrogen, and oxygen isotopes of ostrich eggshells provide site-scale Pleistocene-Holocene paleoenvironmental records for eastern African archaeological sites. Quat. Sci. Rev. 230, 106142 (2020).
Google Scholar
Hayes, E. H. et al. 65,000-years of continuous grinding stone use at Madjedbebe, Northern Australia. Sci. Rep. 12, 11747 (2022).
Google Scholar
Tierney, J. E., de Menocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. Geology 45, 1023–1026 (2017).
Google Scholar
Armitage, S. J. et al. The southern route “Out of Africa”: evidence for an early expansion of modern humans into Arabia. Science 331, 453–456 (2011).
Google Scholar
Beyin, A., Hall, J. & Day, C. A. A least cost path model for hominin dispersal routes out of the East African Rift region (Ethiopia) into the Levant. J. Archaeol. Sci. Rep. 23, 763–772 (2019).
Lamb, H. F. et al. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Sci. Rep. 8, 1077 (2018).
Google Scholar
Revel, M. et al. 100,000 Years of African monsoon variability recorded in sediments of the Nile margin. Quat. Sci. Rev. 29, 1342–1362 (2010).
Google Scholar
Ehrmann, W., Schmiedl, G., Seidel, M., Krüger, S. & Schulz, H. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability. Clim. Past 12, 713–727 (2016).
Google Scholar
Lane, C. S., Chorn, B. T. & Johnson, T. C. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proc. Natl Acad. Sci. USA 110, 8025–8029 (2013).
Google Scholar
Ambrose, S. H. Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Hum. Evol. 34, 623–651 (1998).
Google Scholar
Black, B. A., Lamarque, J.-F., Marsh, D. R., Schmidt, A. & Bardeen, C. G. Global climate disruption and regional climate shelters after the Toba supereruption. Proc. Natl Acad. Sci. USA 118, e2013046118 (2021).
Google Scholar
Osipov, S. et al. The Toba supervolcano eruption caused severe tropical stratospheric ozone depletion. Commun. Earth Environ. 2, 71 (2021).
Google Scholar
Yost, C. L., Jackson, L. J., Stone, J. R. & Cohen, A. S. Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption. J. Hum. Evol. 116, 75–94 (2018).
Google Scholar
Grove, M. Evolution and dispersal under climatic instability: a simple evolutionary algorithm. Adapt. Behav. 22, 235–254 (2014).
Google Scholar
Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).
Google Scholar
Blockley, S. P. E. et al. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quat. Sci. Rev. 24, 1952–1960 (2005).
Google Scholar
Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313–345 (1989).
Google Scholar
Storey, M., Roberts, R. G. & Saidin, M. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proc. Natl Acad. Sci. USA 109, 18684–18688 (2012).
Google Scholar
Mark, D. F. et al. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: forcing of Quaternary climate and implications for hominin occupation of India. Quat. Geochronol. 21, 90–103 (2014).
Google Scholar
Skinner, A. R. in Encyclopedia of Geology 2nd Edn (eds Alderton, D. & Elias, S. A.) 153–163 (Academic, Springer, 2020).
Joannes-Boyau, R. & Grün, R. A comprehensive model for CO2− radicals in fossil tooth enamel: implications for ESR dating. Quat. Geochronol. 6, 82–97 (2011).
Google Scholar
Semenov, S. A. Prehistoric Technology (Cory, Adams, & MacKay, 1964).
Banks, W. E. Toolkit Structure and Site Use: Results of a High-power Use-wear Analysis of Lithic Assemblages from Solutré (Saône-et-Loire), France (BAR International Series, 2009).
Kay, M. in Agate Basin Archaeology at Beacon Island, North Dakota (ed. Mitchell, M. D.) 155–168 (Paleocultural Research Group, 2012).
Keeley, L. Experimental Determination of Stone Tool Uses: A Microwear Analysis (Univ. Chicago Press, 1980).
Kay, M. & Mainfort, R. C. Jr Functional analysis of prismatic blades and bladelets from Pinson Mounds, Tennessee. J. Archaeol. Sci. 50, 63–83 (2014).
Google Scholar
Banks, W. E. & Kay, M. High-resolution casts for lithic use-wear analysis. Lithic Tech. 28, 27–34 (2003).
Google Scholar
Pettigrew, D. B. The Ballistics of Archaic North American Atlatls and Darts. MA thesis, Univ. Arkansas (2015).
Hoffman, R. & Gross, L. Reflected-light differential-interference microscopy: principles, use, and image interpretation. J. Microsc. 91, 149–172 (1970).
Google Scholar
Davis, C. A. Foraging Along Blue Highways: Seasonality and Subsistence Strategies in the Middle Stone Age of Ethiopia. PhD thesis, Univ. Texas (2019).
Gifford, D. P. & Crader, D. C. A computer coding system for archaeological faunal remains. Am. Antiq. 42, 225 (1977).
Google Scholar
Thompson, J. C. Zooarchaeological Tests for Modern Human Behavior at Blombos Cave and Pinnacle Point Cave 13B, Southwestern Cape, South Africa. PhD thesis, Arizona State Univ. (2008).
Bunn, H. T. in Animals and Archaeology (eds Clutton-Brock, J. & Grigson, C.) 143–148 (BAR, 1983).
von den Driesch, A. A Guide to the Measurement of Animal Bones from Archaeological Sites Peabody Museum Bulletin 1 (Peabody Museum of Archaeology and Ethnology, 1976).
Morales, A. & Rosenlund, K. Fish Bone Measurements (Steenstrupia, 1979).
Cohen, A. & Serjeantson, D. A Manual for the Identification of Bird Bones from Archaeological Sites (Archetype, 1996).
Brain, C. K. The Hunters or the Hunted? An Introduction to African Cave Taphonomy (Univ. Chicago Press, 1981).
Reynard, J. P., Badenhorst, S. & Henshilwood, C. S. Inferring animal size from the unidentified long bones from the Middle Stone Age layers at Blombos Cave, South Africa. Ann. Ditsong Natl Mus. Nat. Hist. 4, 9–25 (2014).
Stewart, K. M. Fishing Sites of North and East Africa in the Late Pleistocene and Holocene (BAR, 1989).
Villa, P. & Mahieu, E. Breakage patterns of human long bones. J. Hum. Evol. 21, 27–48 (1991).
Google Scholar
Zohar, I., Dayan, T., Galili, E. & Spanier, E. Fish processing during the early Holocene: a taphonomic case study from coastal Israel. J. Archaeol. Sci. 28, 1041–1053 (2001).
Google Scholar
Zohar, I. et al. The living and the dead: how do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish? Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 292–316 (2008).
Google Scholar
Zohar, I. Fish Exploitation at the Sea of Galilee (Israel) By Early Fisher-Hunter-Gatherers (23,000 BP): Ecological, Economical, and Cultural Implications. PhD thesis, Tel-Aviv University (2003).
Shipman, P., Foster, G. & Schoeninger, M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 11, 307–325 (1984).
Google Scholar
Binford, L. R. Bones: Ancient Men and Modern Myths (Academic, 1981).
Haynes, G. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9, 164–172 (1983).
Google Scholar
Shipman, P. & Rose, J. Evidence of butchery and hominid activities at Torralba and Ambrona; an evaluation using microscopic techniques. J. Archaeol. Sci. 10, 465–474 (1983).
Google Scholar
Behrensmeyer, A. K., Gordon, K. D. & Yanagi, G. T. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319, 768–771 (1986).
Google Scholar
Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).
Google Scholar
Butler, V. L. Natural versus cultural salmonid remains: origin of the Dalles Roadcut bones, Columbia River, Oregon, U.S.A. J. Archaeol. Sci. 20, 1–24 (1993).
Google Scholar
Stewart, K. M. & Gifford-Gonzalez, D. An ethnoarchaeological contribution to identifying hominid fish processing sites. J. Archaeol. Sci. 21, 237–248 (1994).
Google Scholar
Blumenschine, R. J., Marean, C. W. & Capaldo, S. D. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J. Archaeol. Sci. 23, 493–507 (1996).
Google Scholar
Pickering, T. R. & Egeland, C. P. Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans. J. Archaeol. Sci. 33, 459–469 (2006).
Google Scholar
Domínguez-Rodrigo, M., de Juana, S., Galán, A. B. & Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 36, 2643–2654 (2009).
Google Scholar
Fernandez-Jalvo, Y. & Andrews, P. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification, Vertebrate Paleobiology and Paleoanthropology (Springer, 2016).
Thompson, J. C. The impact of post-depositional processes on bone surface modification frequencies: a corrective strategy and its application to the Loiyangalani site, Serengeti Plain, Tanzania. J. Taphon. 3, 57–79 (2005).
Pante, M. C. et al. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. J. Hum. Evol. 102, 1–11 (2017).
Google Scholar
Mountains surface imaging & metrology software: MountainsMap Premium, www.digitalsurf.fr/en/mntkey.html (Digital Surf, 2015).
Jones, C. H. User-driven integrated software lives: “PaleoMag” paleomagnetics analysis on the Macintosh. Comput. Geosci. 28, 1145–1151 (2002).
Google Scholar
Allmendinger, R. W., Cardozo, N. C. & Fisher, D. Structural Geology Algorithms: Vectors & Tensors (Cambridge Univ. Press, 2013).
Cardozo, N. & Allmendinger, R. W. Spherical projections with OSXStereonet. Comput. Geosci. 51, 193–205 (2013).
Google Scholar
Passey, B. H. et al. Timing of C4 biomass expansion and environmental change in the Great Plains: an isotopic record from fossil horses. J. Geol. 110, 123–140 (2002).
Google Scholar
Passey, B. H., Cerling, T. E. & Levin, N. E. Temperature dependence of oxygen isotope acid fractionation for modern and fossil tooth enamels. Rapid Commun. Mass Spectrom. 21, 2853–2859 (2007).
Google Scholar
Swart, P. K., Burns, S. J. & Leder, J. J. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. Isotope Geosci. 86, 89–96 (1991).
Google Scholar
Graven, H. et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 10, 4405–4417 (2017).
Google Scholar
Rots, V., Lentfer, C., Schmid, V. C., Porraz, G. & Conard, N. J. Pressure flaking to serrate bifacial points for the hunt during the MIS5 at Sibudu Cave (South Africa). PLoS ONE 12, e017515 (2017).
Google Scholar