Strange IndiaStrange India


  • Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Vaks, A. et al. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35, 831–834 (2007).

    Article 

    Google Scholar 

  • Smith, E. I. et al. Humans thrived in South Africa through the Toba eruption about 74,000 years ago. Nature 555, 511–515 (2018). (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Loewy, S. L. et al. Improved accuracy of U-series and radiocarbon dating of ostrich eggshell using a sample preparation method based on microstructure and geochemistry: a study from the Middle Stone Age of northwestern Ethiopia. Quat. Sci. Rev. 247, 106525 (2020).

    Article 

    Google Scholar 

  • Hughes, S. S. Getting to the point: evolutionary change in prehistoric weaponry. J. Archaeol. Method Theory 5, 345–408 (1998).

    Article 

    Google Scholar 

  • Sisk, M. L. & Shea, J. J. The African origin of complex projectile technology: an analysis using tip cross-sectional area and perimeter. Int. J. Evol. Biol. https://doi.org/10.4061/2011/968012 (2011).

  • Thomas, D. H. Arrowheads and atlatl darts—how stones got shaft. Am. Antiquity 43, 461–472 (1978).

    Article 

    Google Scholar 

  • Shott, M. J. Stones and shafts redux: the metric discrimination of chipped-stone dart and arrow points. Amer. Antiq. 62, 86–101 (1997).

    Article 

    Google Scholar 

  • Cheshier, J. & Kelly, R. L. Projectile point shape and durability: the effect of thickness:length. Am. Antiq. 71, 353–363 (2006).

    Article 

    Google Scholar 

  • Sahle, Y. & Brooks, A. S. Assessment of complex projectiles in the early Late Pleistocene at Aduma, Ethiopia. PLoS ONE 14, e0216716 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pargeter, J. & Shea, J. J. Going big versus going small: lithic miniaturization in hominin lithic 507 technology. Evol. Anthropol. 28, 72–85 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Coppe, J. & Rots, V. Focus on the target. The importance of a transparent fracture terminology for understanding projectile points and projecting modes. J. Archaeol. Sci. 12, 109–123 (2017).

    Google Scholar 

  • Metz, L., Lewis, J. E. & Slimak, L. Bow-and-arrow technology of the first modern humans in Europe 54,000 years ago at Mandrin, France. Sci. Adv. 9, eadd4675 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lombard, M. & Shea, J. J. Did Pleistocene Africans use the spearthrower-and-dart? Evol. Anthropol. 30, 307–315 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Brown, K. S. et al. An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature 491, 590–593 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baker, S. W. The Nile Tributaries of Abyssinia and the Sword Hunters of the Hamran Arabs (Macmillan, 1867).

  • Assefa, Z. Faunal remains from Porc-Epic: paleoecological and zooarchaeological investigations from a Middle Stone Age site in southeastern Ethiopia. J. Hum. Evol. 51, 50–75 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162 (1978).

    Article 

    Google Scholar 

  • Capaldo, S. D. Simulating the formation of dual-patterned archaeofaunal assemblages with experimental control samples. J. Archaeol. Sci. 25, 311–330 (1998).

    Article 

    Google Scholar 

  • Brooks, A. S. et al. Dating and context of three Middle Stone Age sites with bone points in the Upper Semliki Valley, Zaire. Science 268, 548–553 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kappelman, J. et al. Another unique river: a consideration of some of the characteristics of the trunk tributaries of the Nile River in northwestern Ethiopia in relationship to their aquatic food resources. J. Hum. Evol. 77, 117–131 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Willis, L. M., Eren, M. I. & Rick, T. C. Does butchering fish leave cut marks? J. Archaeol. Sci. 35, 1438–1444 (2008).

    Article 

    Google Scholar 

  • Cerling, T. E., Harris, J. M. & Passey, B. H. Diets of East African Bovidae based on stable isotope analysis. J. Mammal. 84, 456–470 (2003).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1644%2F1545-1542%282003%29084%3C0456%3ADOEABB%3E2.0.CO%3B2″ aria-label=”Article reference 23″ data-doi=”10.1644/1545-1542(2003)084<0456:DOEABB>2.0.CO;2″>Article 

    Google Scholar 

  • Francey, R. J. et al. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B, 170–193 (1999).

    Article 
    CAS 

    Google Scholar 

  • Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Faith, J. T. et al. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East. Africa. J. Hum Evol. 83, 28–45 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Robinson, J. R., Rowan, J., Faith, J. T. & Fleagle, J. G. Paleoenvironmental change in the late Middle Pleistocene—Holocene Kibish Formation, southern Ethiopia: evidence from ungulate isotopic ecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 450, 50–59 (2016).

    Article 

    Google Scholar 

  • Robinson, J. R. Thinking locally: environmental reconstruction of Middle and Later Stone Age archaeological sites in Ethiopia, Kenya, and Zambia based on ungulate stable isotopes. J. Hum. Evol. 106, 19–37 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Garrett, N. D. et al. Stable isotope paleoecology of Late Pleistocene Middle Stone Age humans from the Lake Victoria basin, Kenya. J. Hum. Evol. 82, 1–14 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Roberts, P. et al. Fossil herbivore stable isotopes reveal middle Pleistocene hominin palaeoenvironment in ‘Green Arabia’. Nat. Ecol. Evol. 2, 1871–1878 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).

    Article 
    CAS 

    Google Scholar 

  • Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. USA 114, 7331–7336 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larned, S. T., Datry, T., Arscott, D. B. & Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Biol. 55, 717–738 (2010).

    Article 

    Google Scholar 

  • Tabor, N. J. et al. Stable isotope compositions of the Shinfa River, northwestern Ethiopian lowlands: implications for Middle Stone Age human environments. Geol. Soc. Spec. Publ. 507, 225 (2021).

    Article 

    Google Scholar 

  • Green, D. R. et al. Quantitative reconstruction of seasonality from stable isotopes in teeth. Geochim. Cosmochim. Acta 235, 483–504 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hermance, J. F. Historical Variability of Rainfall in the African East Sahel of Sudan Implications for Development (Springer, 2014).

  • Niespolo, E. M. et al. Carbon, nitrogen, and oxygen isotopes of ostrich eggshells provide site-scale Pleistocene-Holocene paleoenvironmental records for eastern African archaeological sites. Quat. Sci. Rev. 230, 106142 (2020).

    Article 

    Google Scholar 

  • Hayes, E. H. et al. 65,000-years of continuous grinding stone use at Madjedbebe, Northern Australia. Sci. Rep. 12, 11747 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tierney, J. E., de Menocal, P. B. & Zander, P. D. A climatic context for the out-of-Africa migration. Geology 45, 1023–1026 (2017).

    Article 

    Google Scholar 

  • Armitage, S. J. et al. The southern route “Out of Africa”: evidence for an early expansion of modern humans into Arabia. Science 331, 453–456 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beyin, A., Hall, J. & Day, C. A. A least cost path model for hominin dispersal routes out of the East African Rift region (Ethiopia) into the Levant. J. Archaeol. Sci. Rep. 23, 763–772 (2019).

    Google Scholar 

  • Lamb, H. F. et al. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Sci. Rep. 8, 1077 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Revel, M. et al. 100,000 Years of African monsoon variability recorded in sediments of the Nile margin. Quat. Sci. Rev. 29, 1342–1362 (2010).

    Article 

    Google Scholar 

  • Ehrmann, W., Schmiedl, G., Seidel, M., Krüger, S. & Schulz, H. A distal 140 kyr sediment record of Nile discharge and East African monsoon variability. Clim. Past 12, 713–727 (2016).

    Article 

    Google Scholar 

  • Lane, C. S., Chorn, B. T. & Johnson, T. C. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proc. Natl Acad. Sci. USA 110, 8025–8029 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ambrose, S. H. Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Hum. Evol. 34, 623–651 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Black, B. A., Lamarque, J.-F., Marsh, D. R., Schmidt, A. & Bardeen, C. G. Global climate disruption and regional climate shelters after the Toba supereruption. Proc. Natl Acad. Sci. USA 118, e2013046118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osipov, S. et al. The Toba supervolcano eruption caused severe tropical stratospheric ozone depletion. Commun. Earth Environ. 2, 71 (2021).

    Article 

    Google Scholar 

  • Yost, C. L., Jackson, L. J., Stone, J. R. & Cohen, A. S. Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ~74 ka Toba supereruption. J. Hum. Evol. 116, 75–94 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Grove, M. Evolution and dispersal under climatic instability: a simple evolutionary algorithm. Adapt. Behav. 22, 235–254 (2014).

    Article 

    Google Scholar 

  • Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blockley, S. P. E. et al. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quat. Sci. Rev. 24, 1952–1960 (2005).

    Article 

    Google Scholar 

  • Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article 

    Google Scholar 

  • Storey, M., Roberts, R. G. & Saidin, M. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proc. Natl Acad. Sci. USA 109, 18684–18688 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mark, D. F. et al. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: forcing of Quaternary climate and implications for hominin occupation of India. Quat. Geochronol. 21, 90–103 (2014).

    Article 

    Google Scholar 

  • Skinner, A. R. in Encyclopedia of Geology 2nd Edn (eds Alderton, D. & Elias, S. A.) 153–163 (Academic, Springer, 2020).

  • Joannes-Boyau, R. & Grün, R. A comprehensive model for CO2 radicals in fossil tooth enamel: implications for ESR dating. Quat. Geochronol. 6, 82–97 (2011).

    Article 

    Google Scholar 

  • Semenov, S. A. Prehistoric Technology (Cory, Adams, & MacKay, 1964).

  • Banks, W. E. Toolkit Structure and Site Use: Results of a High-power Use-wear Analysis of Lithic Assemblages from Solutré (Saône-et-Loire), France (BAR International Series, 2009).

  • Kay, M. in Agate Basin Archaeology at Beacon Island, North Dakota (ed. Mitchell, M. D.) 155–168 (Paleocultural Research Group, 2012).

  • Keeley, L. Experimental Determination of Stone Tool Uses: A Microwear Analysis (Univ. Chicago Press, 1980).

  • Kay, M. & Mainfort, R. C. Jr Functional analysis of prismatic blades and bladelets from Pinson Mounds, Tennessee. J. Archaeol. Sci. 50, 63–83 (2014).

    Article 

    Google Scholar 

  • Banks, W. E. & Kay, M. High-resolution casts for lithic use-wear analysis. Lithic Tech. 28, 27–34 (2003).

    Article 

    Google Scholar 

  • Pettigrew, D. B. The Ballistics of Archaic North American Atlatls and Darts. MA thesis, Univ. Arkansas (2015).

  • Hoffman, R. & Gross, L. Reflected-light differential-interference microscopy: principles, use, and image interpretation. J. Microsc. 91, 149–172 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, C. A. Foraging Along Blue Highways: Seasonality and Subsistence Strategies in the Middle Stone Age of Ethiopia. PhD thesis, Univ. Texas (2019).

  • Gifford, D. P. & Crader, D. C. A computer coding system for archaeological faunal remains. Am. Antiq. 42, 225 (1977).

    Article 

    Google Scholar 

  • Thompson, J. C. Zooarchaeological Tests for Modern Human Behavior at Blombos Cave and Pinnacle Point Cave 13B, Southwestern Cape, South Africa. PhD thesis, Arizona State Univ. (2008).

  • Bunn, H. T. in Animals and Archaeology (eds Clutton-Brock, J. & Grigson, C.) 143–148 (BAR, 1983).

  • von den Driesch, A. A Guide to the Measurement of Animal Bones from Archaeological Sites Peabody Museum Bulletin 1 (Peabody Museum of Archaeology and Ethnology, 1976).

  • Morales, A. & Rosenlund, K. Fish Bone Measurements (Steenstrupia, 1979).

  • Cohen, A. & Serjeantson, D. A Manual for the Identification of Bird Bones from Archaeological Sites (Archetype, 1996).

  • Brain, C. K. The Hunters or the Hunted? An Introduction to African Cave Taphonomy (Univ. Chicago Press, 1981).

  • Reynard, J. P., Badenhorst, S. & Henshilwood, C. S. Inferring animal size from the unidentified long bones from the Middle Stone Age layers at Blombos Cave, South Africa. Ann. Ditsong Natl Mus. Nat. Hist. 4, 9–25 (2014).

    Google Scholar 

  • Stewart, K. M. Fishing Sites of North and East Africa in the Late Pleistocene and Holocene (BAR, 1989).

  • Villa, P. & Mahieu, E. Breakage patterns of human long bones. J. Hum. Evol. 21, 27–48 (1991).

    Article 

    Google Scholar 

  • Zohar, I., Dayan, T., Galili, E. & Spanier, E. Fish processing during the early Holocene: a taphonomic case study from coastal Israel. J. Archaeol. Sci. 28, 1041–1053 (2001).

    Article 

    Google Scholar 

  • Zohar, I. et al. The living and the dead: how do taphonomic processes modify relative abundance and skeletal completeness of freshwater fish? Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 292–316 (2008).

    Article 

    Google Scholar 

  • Zohar, I. Fish Exploitation at the Sea of Galilee (Israel) By Early Fisher-Hunter-Gatherers (23,000 BP): Ecological, Economical, and Cultural Implications. PhD thesis, Tel-Aviv University (2003).

  • Shipman, P., Foster, G. & Schoeninger, M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 11, 307–325 (1984).

    Article 

    Google Scholar 

  • Binford, L. R. Bones: Ancient Men and Modern Myths (Academic, 1981).

  • Haynes, G. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9, 164–172 (1983).

    Article 

    Google Scholar 

  • Shipman, P. & Rose, J. Evidence of butchery and hominid activities at Torralba and Ambrona; an evaluation using microscopic techniques. J. Archaeol. Sci. 10, 465–474 (1983).

    Article 

    Google Scholar 

  • Behrensmeyer, A. K., Gordon, K. D. & Yanagi, G. T. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319, 768–771 (1986).

    Article 

    Google Scholar 

  • Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).

    Article 

    Google Scholar 

  • Butler, V. L. Natural versus cultural salmonid remains: origin of the Dalles Roadcut bones, Columbia River, Oregon, U.S.A. J. Archaeol. Sci. 20, 1–24 (1993).

    Article 

    Google Scholar 

  • Stewart, K. M. & Gifford-Gonzalez, D. An ethnoarchaeological contribution to identifying hominid fish processing sites. J. Archaeol. Sci. 21, 237–248 (1994).

    Article 

    Google Scholar 

  • Blumenschine, R. J., Marean, C. W. & Capaldo, S. D. Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. J. Archaeol. Sci. 23, 493–507 (1996).

    Article 

    Google Scholar 

  • Pickering, T. R. & Egeland, C. P. Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans. J. Archaeol. Sci. 33, 459–469 (2006).

    Article 

    Google Scholar 

  • Domínguez-Rodrigo, M., de Juana, S., Galán, A. B. & Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 36, 2643–2654 (2009).

    Article 

    Google Scholar 

  • Fernandez-Jalvo, Y. & Andrews, P. Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification, Vertebrate Paleobiology and Paleoanthropology (Springer, 2016).

  • Thompson, J. C. The impact of post-depositional processes on bone surface modification frequencies: a corrective strategy and its application to the Loiyangalani site, Serengeti Plain, Tanzania. J. Taphon. 3, 57–79 (2005).

    Google Scholar 

  • Pante, M. C. et al. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. J. Hum. Evol. 102, 1–11 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Mountains surface imaging & metrology software: MountainsMap Premium, www.digitalsurf.fr/en/mntkey.html (Digital Surf, 2015).

  • Jones, C. H. User-driven integrated software lives: “PaleoMag” paleomagnetics analysis on the Macintosh. Comput. Geosci. 28, 1145–1151 (2002).

    Article 

    Google Scholar 

  • Allmendinger, R. W., Cardozo, N. C. & Fisher, D. Structural Geology Algorithms: Vectors & Tensors (Cambridge Univ. Press, 2013).

  • Cardozo, N. & Allmendinger, R. W. Spherical projections with OSXStereonet. Comput. Geosci. 51, 193–205 (2013).

    Article 

    Google Scholar 

  • Passey, B. H. et al. Timing of C4 biomass expansion and environmental change in the Great Plains: an isotopic record from fossil horses. J. Geol. 110, 123–140 (2002).

    Article 
    CAS 

    Google Scholar 

  • Passey, B. H., Cerling, T. E. & Levin, N. E. Temperature dependence of oxygen isotope acid fractionation for modern and fossil tooth enamels. Rapid Commun. Mass Spectrom. 21, 2853–2859 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swart, P. K., Burns, S. J. & Leder, J. J. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem. Geol. Isotope Geosci. 86, 89–96 (1991).

    Article 
    CAS 

    Google Scholar 

  • Graven, H. et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci. Model Dev. 10, 4405–4417 (2017).

    Article 
    CAS 

    Google Scholar 

  • Rots, V., Lentfer, C., Schmid, V. C., Porraz, G. & Conard, N. J. Pressure flaking to serrate bifacial points for the hunt during the MIS5 at Sibudu Cave (South Africa). PLoS ONE 12, e017515 (2017).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *