Strange IndiaStrange India


  • Molengraaff, G. A. F. Borneo Expeditie—Geologische Verkenningstochten in Centraal-Borneo (1893–94) [Borneo Expedition—Geological Reconnaissance in Central Borneo (1893–94)] (Gerlings, 1900).

  • Weber, C. A. Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta mit vergleichenden Ausblicken auf andere Hochmoore der Erde; Eine Formationsbiologisch-historische und Geologische Studie (Paul Parey, 1902).

  • Granlund, E. De svenska högmossarnas geologi. Sveriges Geologiska Undersökningar 26, 1–93 (1932).

    Google Scholar 

  • Ivanov, K. E. Water Movement in Mirelands (Academic, 1981) [transl.].

  • Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, eabn1479 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ingram, H. A. P. Size and shape in raised mire ecosystems: a geophysical model. Nature 297, 300–303 (1982).

    Article 
    ADS 

    Google Scholar 

  • Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. 114, E5187–E5196 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, J. S., Heathwaite, A. L. & Baird, A. J. Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetl. Ecol. Manag. 11, 65–83 (2003).

    Article 
    CAS 

    Google Scholar 

  • Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114, 11–20 (2014).

    Article 

    Google Scholar 

  • Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).

    Article 
    ADS 

    Google Scholar 

  • Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).

    Article 
    ADS 

    Google Scholar 

  • Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5, 1475–1491 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lund, M. et al. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol. 16, 2436–2448 (2010).

    Article 

    Google Scholar 

  • Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gorham, E. The development of peat lands. Q. Rev. Biol. 32, 145–166 (1957).

    Article 

    Google Scholar 

  • Anderson, J. A. R. The structure and development of the peat swamps of Sarawak and Brunei. J. Trop. Geogr. 18, 7–16 (1964).

    Google Scholar 

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rydin, H. & Jeglum, J. The Biology of Peatlands (Oxford Univ. Press, 2006).

  • Lähteenoja, O., Flores, B. & Nelson, B. Tropical peat accumulation in Central Amazonia. Wetlands 33, 495–503 (2013).

    Article 

    Google Scholar 

  • Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2019).

    Article 

    Google Scholar 

  • Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Article 
    ADS 

    Google Scholar 

  • Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    Article 
    CAS 

    Google Scholar 

  • Dommain, R. et al. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Glob. Change Biol. 24, 5518–5533 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ritzema, H. P. (ed.) Drainage Principles and Applications (International Institute for Land Reclamation and Improvement, 1994).

  • Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2014).

    Article 
    ADS 

    Google Scholar 

  • Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Korpela, I., Koskinen, M., Vasander, H., Holopainen, M. & Minkkinen, K. Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For. Ecol. Manag. 258, 1549–1566 (2009).

    Article 

    Google Scholar 

  • Vernimmen, R. et al. Creating a lowland and peatland landscape digital terrain model (DTM) from interpolated partial coverage LiDAR data for Central Kalimantan and East Sumatra, Indonesia. Remote Sens. 11, 1152 (2019).

    Article 
    ADS 

    Google Scholar 

  • Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manage. 12, 12 (2017).

    Article 

    Google Scholar 

  • Greb, S. F., DiMichele, W. A. & Gastaldo, R. A. in Wetlands Through Time (eds. Greb, S. F. & DiMichele, W. A.) 1–40 (Geological Society of America, 2006).

  • Morley, R. J. Cenozoic ecological history of South East Asian peat mires based on the comparison of coals with present day and Late Quaternary peats. J. Limnol. 72, 36–59 (2013).

    Article 

    Google Scholar 

  • Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. 116, 4822–4827 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hastie, A. et al. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nat. Geosci. 15, 369–374 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Childs, E. C. & Youngs, E. G. A study of some three-dimensional field-drainage problems. Soil Sci. 92, 15–24 (1961).

    Article 
    ADS 

    Google Scholar 

  • Baird, A. J. et al. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys. Res. Lett. 44, 1333–1339 (2017).

    Article 
    ADS 

    Google Scholar 

  • Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).

    Article 
    ADS 

    Google Scholar 

  • Morris, P. J., Baird, A. J., Eades, P. A. & Surridge, B. W. J. Controls on near-surface hydraulic conductivity in a raised bog. Water Resour. Res. 55, 1531–1543 (2019).

    Article 
    ADS 

    Google Scholar 

  • Noon, M. L. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5, 37–46 (2021).

    Article 

    Google Scholar 

  • Tay, T. H. The distribution, characteristics, uses and potential of peat in West Malaysia. J. Trop. Geogr. 29, 58–63 (1969).

    Google Scholar 

  • Lim, K. H., Lim, S. S., Parish, F. & Suharto, R. (eds) RSPO Manual on Best Management Practices (BMPs) for Existing Oil Palm Cultivation on Peat (Roundtable on Sustainable Palm Oil, 2012).

  • Holden, J., Chapman, P. J. & Labadz, J. C. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geog. 28, 95–123 (2004).

    Article 

    Google Scholar 

  • Andriesse, J. P. Nature and management of tropical peat soils. FAO Soils Bulletin https://www.fao.org/3/x5872e/x5872e00.htm (1988).

  • Silvestri, S. et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 124, 3107–3123 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Parry, L. E., Holden, J. & Chapman, P. J. Restoration of blanket peatlands. J. Environ. Manage. 133, 193–205 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Dommain, R. et al. in Peatland Restoration and Ecosystem Services (eds. Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R.) 253–288 (Cambridge Univ. Press, 2016).

  • Martin-Ortega, J., Allott, T. E. H., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).

    Article 

    Google Scholar 

  • Hidayat, H., Hoekman, D. H., Vissers, M. A. M. & Hoitink, A. J. F. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrol. Earth Syst. Sci. 16, 1805–1816 (2012).

    Article 
    ADS 

    Google Scholar 

  • Cecil, C. B. et al. Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the central Appalachian basin (USA). Int. J. Coal Geol. 5, 195–230 (1985).

    Article 

    Google Scholar 

  • Greb, S. F. et al. in Extreme Depositional Environments: Mega End Members in Geologic Time (eds. Chan, M. A. & Archer, A. W.) 127–150 (Geological Society of America, 2003).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).

    Article 

    Google Scholar 

  • Korhola, A. A. Radiocarbon evidence for rates of lateral expansion in raised mires in southern Finland. Quat. Res. 42, 299–307 (1994).

    Article 

    Google Scholar 

  • Edom, F., Münch, A., Dittrich, I., Keßler, K. & Peters, R. Hydromorphological analysis and water balance modelling of ombro- and mesotrophic peatlands. Adv. Geosci. 27, 131–137 (2010).

    Article 

    Google Scholar 

  • Hooijer, A. in Forests, Water and People in the Humid Tropics (eds. Bonell, M. & Bruijnzeel, L. A.) 447–461 (Cambridge Univ. Press, 2005).

  • Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem. Geol. 429, 75–84 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Baird, A. J., Eades, P. A. & Surridge, B. W. J. The hydraulic structure of a raised bog and its implications for ecohydrological modelling of bog development. Ecohydrology 1, 289–298 (2008).

    Article 

    Google Scholar 

  • Heinselman, M. L. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz region, Minnesota. Ecol. Monogr. 33, 327–374 (1963).

    Article 

    Google Scholar 

  • Glaser, P. H. & Janssens, J. A. Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can. J. Bot. 64, 395–415 (1986).

    Article 

    Google Scholar 

  • Cobb, A. R., Dommain, R., Tan, F., Heng, N. H. E. & Harvey, C. F. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environ. Res. Lett. 15, 114009 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing 2nd edn (Cambridge Univ. Press, 1992).

  • Averick, B. M. & Ortega, J. M. Fast solution of nonlinear Poisson-type equations. SIAM J. Sci. Comput. 14, 44–48 (1993).

    Article 
    MathSciNet 

    Google Scholar 

  • Youngs, E. G. Horizontal seepage through unconfined aquifers with hydraulic conductivity varying with depth. J. Hydrol. 3, 283–296 (1965).

    Article 
    ADS 

    Google Scholar 

  • Youngs, E. G. An examination of computed steady-state water-table heights in unconfined aquifers: Dupuit-Forchheimer estimates and exact analytical results. J. Hydrol. 119, 201–214 (1990).

    Article 
    ADS 

    Google Scholar 

  • Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).

    Article 

    Google Scholar 

  • GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library, version 2.3.2 (Open Source Geospatial Foundation, 2018).

  • GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) software, version 7.4.4 (Open Source Geospatial Foundation, 2018).

  • Dachnowski-Stokes, A. P. Peat resources in Alaska. Technical Bulletin 769, United States Department of Agriculture (1941).

  • Glaser, P. H., Janssens, J. A. & Siegel, D. I. The response of vegetation to chemical and hydrological gradients in the Lost River peatland, Northern Minnesota. J. Ecol. 78, 1021–1048 (1990).

    Article 

    Google Scholar 

  • Gorham, E., Janssens, J. A. & Glaser, P. H. Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Can. J. Bot. 81, 429–438 (2003).

    Article 

    Google Scholar 

  • Raymond, R., Cameron, C. C. & Cohen, A. D. Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine. Int. J. Coal Geol. 8, 175–187 (1987).

    Article 
    CAS 

    Google Scholar 

  • Korhola, A., Alm, J., Tolonen, K., Turunen, J. & Jungner, H. Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millennia in a raised mire. J. Quat. Sci. 11, 161–165 (1996).

    3.0.CO;2-J” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291099-1417%28199603%2F04%2911%3A2%3C161%3A%3AAID-JQS248%3E3.0.CO%3B2-J” aria-label=”Article reference 76″ data-doi=”10.1002/(SICI)1099-1417(199603/04)11:2<161::AID-JQS248>3.0.CO;2-J”>Article 

    Google Scholar 

  • Salm, J.-O. et al. Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692, 41–55 (2012).

    Article 
    CAS 

    Google Scholar 

  • Ilomets, M. in Mires and Peatlands of Europe (eds. Joosten, H., Tanneberger, F. & Moen, A.) 360–371 (Schweizerbart’sche Verlagsbuchhandlung, 2017).

  • Anderson, J. A. R. The Ecology and Forest Types of the Peat Swamp Forests of Sarawak and Brunei in Relation to their Silviculture. PhD thesis, Univ. Edinburgh (1961).

  • Maggs, G. R. Hydrology of the Kopouatai peat dome. J. Hydrol. N. Z. 36, 147–172 (1997).

    Google Scholar 

  • Clarkson, B. R., Schipper, L. A. & Lehmann, A. Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands 24, 133–151 (2004).

    Article 

    Google Scholar 

  • Thornburrow, B., Williamson, J. & Outram, P. Kopuatai Peat Dome Drainage & Desktop Hydrological Study: Report Prepared for New Zealand Department of Conservation (Sinclair Knight Merz, 2009).

  • Newnham, R. M. et al. Peat humification records from Restionaceae bogs in northern New Zealand as potential indicators of Holocene precipitation, seasonality, and ENSO. Quat. Sci. Rev. 218, 378–394 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sjörs, H. Bogs and fens in the Hudson Bay lowlands. Arctic 12, 2–19 (1959).

    Article 

    Google Scholar 

  • Glaser, P. H., Siegel, D. I., Reeve, A. S. & Chanton, J. P. in Peatlands: Evolution and Records of Environmental and Climate Changes (eds. Martini, I. P., Martinez Cortízas, A., & Chesworth, W.) 347–376 (Elsevier, 2006).

  • Vitt, D. H. in Boreal Peatland Ecosystems (eds. Wieder, R. K. & Vitt, D. H.) 9–24 (Springer, 2006).

  • Honorio Coronado, E. N. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bradof, K. L. in The Patterned Peatlands of Minnesota (eds. Wright, Jr., H. E., Coffin, B. A. & Aaseng, N. E.) 263–284 (Univ. Minnesota Press, 1992).

  • Bradof, K. L. in The Patterned Peatlands of Minnesota (eds. Wright, Jr, H. E., Coffin, B. A. & Aaseng, N. E.) 173–186 (Univ. Minnesota Press, 1992).

  • Geuzaine, C. & Remacle, J.-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

    Article 
    MathSciNet 

    Google Scholar 

  • Bangerth, W., Hartmann, R. & Kanschat, G. deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007).

    Article 
    MathSciNet 

    Google Scholar 

  • Arndt, D. et al. The deal.II library, version 9.1. J. Numer. Math. 27, 203–213 (2019).

    Article 
    MathSciNet 

    Google Scholar 

  • Iman, R. L. & Conover, W. J. The use of the rank transform in regression. Technometrics 21, 499–509 (1979).

    Article 

    Google Scholar 

  • Simpson, J., Smith, T. & Wooster, M. Assessment of errors caused by forest vegetation structure in airborne LiDAR-derived DTMs. Remote Sens. 9, 1101 (2017).

    Article 
    ADS 

    Google Scholar 

  • Lampela, M. et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 139, 127–136 (2016).

    Article 
    CAS 

    Google Scholar 

  • Campbell, E. O. in Ecosystems of the World, 4B: Mires: Swamp, Bog, Fen and Moor: Regional Studies (ed. Gore, A. J. P.) 153–180 (Elsevier, 1983).

  • Heathwaite, A. L., Eggelsmann, R. & Göttlich, K. H. in Mires: Process, Exploitation and Conservation (eds. Heathwaite, A. L. & Göttlich, Kh.) 417–484 (Wiley, 1993).

  • Mulqueen, J. Hydrology and drainage of peatland. Environ. Geology Water Sci. 9, 15–22 (1986).

    Article 
    ADS 

    Google Scholar 

  • Joosten, H., Tapio-Biström, M.-L., & Susanna Tol, S. (eds) Peatlands — Guidance for Climate Change Mitigation through Conservation, Rehabilitation and Sustainable Use Vol. 5, 2nd edn (Food and Agriculture Organization of the United Nations and Wetlands International, 2012).

  • Joosten, H. & Tanneberger, F. in Mires and Peatlands of Europe (eds. Joosten, H., Tanneberger, F. & Moen, A.) 151–172 (Schweizerbart’sche Verlagsbuchhandlung, 2017).

  • Cobb, A. R., Dommain, R., Yeap, K. & Cao, H. Raster grids of eight bogs in North America, Europe, Borneo, and New Zealand. PANGAEA https://doi.org/10.1594/PANGAEA.931195 (2023).

  • Emery, K. O., Wigley, R. L., Bartlett, A. S., Rubin, M. & Barghoorn, E. S. Freshwater peat on the continental shelf. Science 158, 1301–1307 (1967).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Situmorang, M., Kuntoro, Faturachman, A., Ilahude, D. & Siregar, D. A. Distribution and characteristics of Quaternary peat deposits in eastern Jawa Sea. Bull. Mar. Geol. Inst. Indon. 8, 9–20 (1993).

    Google Scholar 

  • Kremenetski, K. V. et al. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quat. Sci. Rev. 22, 703–723 (2003).

    Article 
    ADS 

    Google Scholar 

  • Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).

    Article 
    ADS 

    Google Scholar 

  • Ruppel, M., Väliranta, M., Virtanen, T. & Korhola, A. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene 23, 1596–1606 (2013).

    Article 
    ADS 

    Google Scholar 

  • Comas, X., Slater, L. & Reeve, A. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. J. Hydrol. 295, 173–184 (2004).

    Article 
    ADS 

    Google Scholar 

  • Comas, X. et al. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences 12, 2995–3007 (2015).

    Article 
    ADS 

    Google Scholar 

  • Suhip, M. A. A., Gödeke, S. H., Cobb, A. R. & Sukri, R. S. Seismic refraction study, single well test and physical core analysis of anthropogenic degraded peat at the Badas Peat Dome, Brunei Darussalam. Eng. Geol. 273, 105689 (2020).

    Article 

    Google Scholar 

  • Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).

    Article 
    ADS 

    Google Scholar 

  • Korhola, A., Tolonen, K., Turunen, J. & Jungner, H. Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon 37, 575–584 (1995).

    Article 
    CAS 

    Google Scholar 

  • Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. Biogeosci. 120, 617–640 (2015).

    Article 
    CAS 

    Google Scholar 

  • Schipper, L. A. & McLeod, M. Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand. Soil Use Manag. 18, 91–93 (2006).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *