Molengraaff, G. A. F. Borneo Expeditie—Geologische Verkenningstochten in Centraal-Borneo (1893–94) [Borneo Expedition—Geological Reconnaissance in Central Borneo (1893–94)] (Gerlings, 1900).
Weber, C. A. Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta mit vergleichenden Ausblicken auf andere Hochmoore der Erde; Eine Formationsbiologisch-historische und Geologische Studie (Paul Parey, 1902).
Granlund, E. De svenska högmossarnas geologi. Sveriges Geologiska Undersökningar 26, 1–93 (1932).
Ivanov, K. E. Water Movement in Mirelands (Academic, 1981) [transl.].
Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, eabn1479 (2022).
Google Scholar
Ingram, H. A. P. Size and shape in raised mire ecosystems: a geophysical model. Nature 297, 300–303 (1982).
Google Scholar
Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. 114, E5187–E5196 (2017).
Google Scholar
Price, J. S., Heathwaite, A. L. & Baird, A. J. Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetl. Ecol. Manag. 11, 65–83 (2003).
Google Scholar
Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114, 11–20 (2014).
Google Scholar
Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120, 695–701 (2012).
Google Scholar
Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).
Google Scholar
Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).
Google Scholar
Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).
Google Scholar
Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5, 1475–1491 (2008).
Google Scholar
Lund, M. et al. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob. Change Biol. 16, 2436–2448 (2010).
Google Scholar
Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).
Google Scholar
Gorham, E. The development of peat lands. Q. Rev. Biol. 32, 145–166 (1957).
Google Scholar
Anderson, J. A. R. The structure and development of the peat swamps of Sarawak and Brunei. J. Trop. Geogr. 18, 7–16 (1964).
Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).
Google Scholar
Rydin, H. & Jeglum, J. The Biology of Peatlands (Oxford Univ. Press, 2006).
Lähteenoja, O., Flores, B. & Nelson, B. Tropical peat accumulation in Central Amazonia. Wetlands 33, 495–503 (2013).
Google Scholar
Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Chang. 24, 669–686 (2019).
Google Scholar
Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).
Google Scholar
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
Google Scholar
Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).
Google Scholar
Dommain, R. et al. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Glob. Change Biol. 24, 5518–5533 (2018).
Google Scholar
Ritzema, H. P. (ed.) Drainage Principles and Applications (International Institute for Land Reclamation and Improvement, 1994).
Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2014).
Google Scholar
Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).
Google Scholar
Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).
Google Scholar
Korpela, I., Koskinen, M., Vasander, H., Holopainen, M. & Minkkinen, K. Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For. Ecol. Manag. 258, 1549–1566 (2009).
Google Scholar
Vernimmen, R. et al. Creating a lowland and peatland landscape digital terrain model (DTM) from interpolated partial coverage LiDAR data for Central Kalimantan and East Sumatra, Indonesia. Remote Sens. 11, 1152 (2019).
Google Scholar
Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manage. 12, 12 (2017).
Google Scholar
Greb, S. F., DiMichele, W. A. & Gastaldo, R. A. in Wetlands Through Time (eds. Greb, S. F. & DiMichele, W. A.) 1–40 (Geological Society of America, 2006).
Morley, R. J. Cenozoic ecological history of South East Asian peat mires based on the comparison of coals with present day and Late Quaternary peats. J. Limnol. 72, 36–59 (2013).
Google Scholar
Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. 116, 4822–4827 (2019).
Google Scholar
Crezee, B. et al. Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nat. Geosci. 15, 639–644 (2022).
Google Scholar
Hastie, A. et al. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nat. Geosci. 15, 369–374 (2022).
Google Scholar
Childs, E. C. & Youngs, E. G. A study of some three-dimensional field-drainage problems. Soil Sci. 92, 15–24 (1961).
Google Scholar
Baird, A. J. et al. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys. Res. Lett. 44, 1333–1339 (2017).
Google Scholar
Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).
Google Scholar
Morris, P. J., Baird, A. J., Eades, P. A. & Surridge, B. W. J. Controls on near-surface hydraulic conductivity in a raised bog. Water Resour. Res. 55, 1531–1543 (2019).
Google Scholar
Noon, M. L. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5, 37–46 (2021).
Google Scholar
Tay, T. H. The distribution, characteristics, uses and potential of peat in West Malaysia. J. Trop. Geogr. 29, 58–63 (1969).
Lim, K. H., Lim, S. S., Parish, F. & Suharto, R. (eds) RSPO Manual on Best Management Practices (BMPs) for Existing Oil Palm Cultivation on Peat (Roundtable on Sustainable Palm Oil, 2012).
Holden, J., Chapman, P. J. & Labadz, J. C. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geog. 28, 95–123 (2004).
Google Scholar
Andriesse, J. P. Nature and management of tropical peat soils. FAO Soils Bulletin https://www.fao.org/3/x5872e/x5872e00.htm (1988).
Silvestri, S. et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 124, 3107–3123 (2019).
Google Scholar
Parry, L. E., Holden, J. & Chapman, P. J. Restoration of blanket peatlands. J. Environ. Manage. 133, 193–205 (2014).
Google Scholar
Dommain, R. et al. in Peatland Restoration and Ecosystem Services (eds. Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R.) 253–288 (Cambridge Univ. Press, 2016).
Martin-Ortega, J., Allott, T. E. H., Glenk, K. & Schaafsma, M. Valuing water quality improvements from peatland restoration: evidence and challenges. Ecosyst. Serv. 9, 34–43 (2014).
Google Scholar
Hidayat, H., Hoekman, D. H., Vissers, M. A. M. & Hoitink, A. J. F. Flood occurrence mapping of the middle Mahakam lowland area using satellite radar. Hydrol. Earth Syst. Sci. 16, 1805–1816 (2012).
Google Scholar
Cecil, C. B. et al. Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the central Appalachian basin (USA). Int. J. Coal Geol. 5, 195–230 (1985).
Google Scholar
Greb, S. F. et al. in Extreme Depositional Environments: Mega End Members in Geologic Time (eds. Chan, M. A. & Archer, A. W.) 127–150 (Geological Society of America, 2003).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
Google Scholar
Korhola, A. A. Radiocarbon evidence for rates of lateral expansion in raised mires in southern Finland. Quat. Res. 42, 299–307 (1994).
Google Scholar
Edom, F., Münch, A., Dittrich, I., Keßler, K. & Peters, R. Hydromorphological analysis and water balance modelling of ombro- and mesotrophic peatlands. Adv. Geosci. 27, 131–137 (2010).
Google Scholar
Hooijer, A. in Forests, Water and People in the Humid Tropics (eds. Bonell, M. & Bruijnzeel, L. A.) 447–461 (Cambridge Univ. Press, 2005).
Rezanezhad, F. et al. Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem. Geol. 429, 75–84 (2016).
Google Scholar
Baird, A. J., Eades, P. A. & Surridge, B. W. J. The hydraulic structure of a raised bog and its implications for ecohydrological modelling of bog development. Ecohydrology 1, 289–298 (2008).
Google Scholar
Heinselman, M. L. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz region, Minnesota. Ecol. Monogr. 33, 327–374 (1963).
Google Scholar
Glaser, P. H. & Janssens, J. A. Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Can. J. Bot. 64, 395–415 (1986).
Google Scholar
Cobb, A. R., Dommain, R., Tan, F., Heng, N. H. E. & Harvey, C. F. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environ. Res. Lett. 15, 114009 (2020).
Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing 2nd edn (Cambridge Univ. Press, 1992).
Averick, B. M. & Ortega, J. M. Fast solution of nonlinear Poisson-type equations. SIAM J. Sci. Comput. 14, 44–48 (1993).
Google Scholar
Youngs, E. G. Horizontal seepage through unconfined aquifers with hydraulic conductivity varying with depth. J. Hydrol. 3, 283–296 (1965).
Google Scholar
Youngs, E. G. An examination of computed steady-state water-table heights in unconfined aquifers: Dupuit-Forchheimer estimates and exact analytical results. J. Hydrol. 119, 201–214 (1990).
Google Scholar
Belyea, L. R. & Baird, A. J. Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol. Monogr. 76, 299–322 (2006).
Google Scholar
GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library, version 2.3.2 (Open Source Geospatial Foundation, 2018).
GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS) software, version 7.4.4 (Open Source Geospatial Foundation, 2018).
Dachnowski-Stokes, A. P. Peat resources in Alaska. Technical Bulletin 769, United States Department of Agriculture (1941).
Glaser, P. H., Janssens, J. A. & Siegel, D. I. The response of vegetation to chemical and hydrological gradients in the Lost River peatland, Northern Minnesota. J. Ecol. 78, 1021–1048 (1990).
Google Scholar
Gorham, E., Janssens, J. A. & Glaser, P. H. Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Can. J. Bot. 81, 429–438 (2003).
Google Scholar
Raymond, R., Cameron, C. C. & Cohen, A. D. Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine. Int. J. Coal Geol. 8, 175–187 (1987).
Google Scholar
Korhola, A., Alm, J., Tolonen, K., Turunen, J. & Jungner, H. Three-dimensional reconstruction of carbon accumulation and CH4 emission during nine millennia in a raised mire. J. Quat. Sci. 11, 161–165 (1996).
Google Scholar
Salm, J.-O. et al. Emissions of CO2, CH4 and N2O from undisturbed, drained and mined peatlands in Estonia. Hydrobiologia 692, 41–55 (2012).
Google Scholar
Ilomets, M. in Mires and Peatlands of Europe (eds. Joosten, H., Tanneberger, F. & Moen, A.) 360–371 (Schweizerbart’sche Verlagsbuchhandlung, 2017).
Anderson, J. A. R. The Ecology and Forest Types of the Peat Swamp Forests of Sarawak and Brunei in Relation to their Silviculture. PhD thesis, Univ. Edinburgh (1961).
Maggs, G. R. Hydrology of the Kopouatai peat dome. J. Hydrol. N. Z. 36, 147–172 (1997).
Clarkson, B. R., Schipper, L. A. & Lehmann, A. Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands 24, 133–151 (2004).
Google Scholar
Thornburrow, B., Williamson, J. & Outram, P. Kopuatai Peat Dome Drainage & Desktop Hydrological Study: Report Prepared for New Zealand Department of Conservation (Sinclair Knight Merz, 2009).
Newnham, R. M. et al. Peat humification records from Restionaceae bogs in northern New Zealand as potential indicators of Holocene precipitation, seasonality, and ENSO. Quat. Sci. Rev. 218, 378–394 (2019).
Google Scholar
Sjörs, H. Bogs and fens in the Hudson Bay lowlands. Arctic 12, 2–19 (1959).
Google Scholar
Glaser, P. H., Siegel, D. I., Reeve, A. S. & Chanton, J. P. in Peatlands: Evolution and Records of Environmental and Climate Changes (eds. Martini, I. P., Martinez Cortízas, A., & Chesworth, W.) 347–376 (Elsevier, 2006).
Vitt, D. H. in Boreal Peatland Ecosystems (eds. Wieder, R. K. & Vitt, D. H.) 9–24 (Springer, 2006).
Honorio Coronado, E. N. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).
Google Scholar
Bradof, K. L. in The Patterned Peatlands of Minnesota (eds. Wright, Jr., H. E., Coffin, B. A. & Aaseng, N. E.) 263–284 (Univ. Minnesota Press, 1992).
Bradof, K. L. in The Patterned Peatlands of Minnesota (eds. Wright, Jr, H. E., Coffin, B. A. & Aaseng, N. E.) 173–186 (Univ. Minnesota Press, 1992).
Geuzaine, C. & Remacle, J.-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).
Google Scholar
Bangerth, W., Hartmann, R. & Kanschat, G. deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007).
Google Scholar
Arndt, D. et al. The deal.II library, version 9.1. J. Numer. Math. 27, 203–213 (2019).
Google Scholar
Iman, R. L. & Conover, W. J. The use of the rank transform in regression. Technometrics 21, 499–509 (1979).
Google Scholar
Simpson, J., Smith, T. & Wooster, M. Assessment of errors caused by forest vegetation structure in airborne LiDAR-derived DTMs. Remote Sens. 9, 1101 (2017).
Google Scholar
Lampela, M. et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 139, 127–136 (2016).
Google Scholar
Campbell, E. O. in Ecosystems of the World, 4B: Mires: Swamp, Bog, Fen and Moor: Regional Studies (ed. Gore, A. J. P.) 153–180 (Elsevier, 1983).
Heathwaite, A. L., Eggelsmann, R. & Göttlich, K. H. in Mires: Process, Exploitation and Conservation (eds. Heathwaite, A. L. & Göttlich, Kh.) 417–484 (Wiley, 1993).
Mulqueen, J. Hydrology and drainage of peatland. Environ. Geology Water Sci. 9, 15–22 (1986).
Google Scholar
Joosten, H., Tapio-Biström, M.-L., & Susanna Tol, S. (eds) Peatlands — Guidance for Climate Change Mitigation through Conservation, Rehabilitation and Sustainable Use Vol. 5, 2nd edn (Food and Agriculture Organization of the United Nations and Wetlands International, 2012).
Joosten, H. & Tanneberger, F. in Mires and Peatlands of Europe (eds. Joosten, H., Tanneberger, F. & Moen, A.) 151–172 (Schweizerbart’sche Verlagsbuchhandlung, 2017).
Cobb, A. R., Dommain, R., Yeap, K. & Cao, H. Raster grids of eight bogs in North America, Europe, Borneo, and New Zealand. PANGAEA https://doi.org/10.1594/PANGAEA.931195 (2023).
Emery, K. O., Wigley, R. L., Bartlett, A. S., Rubin, M. & Barghoorn, E. S. Freshwater peat on the continental shelf. Science 158, 1301–1307 (1967).
Google Scholar
Situmorang, M., Kuntoro, Faturachman, A., Ilahude, D. & Siregar, D. A. Distribution and characteristics of Quaternary peat deposits in eastern Jawa Sea. Bull. Mar. Geol. Inst. Indon. 8, 9–20 (1993).
Kremenetski, K. V. et al. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history. Quat. Sci. Rev. 22, 703–723 (2003).
Google Scholar
Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).
Google Scholar
Ruppel, M., Väliranta, M., Virtanen, T. & Korhola, A. Postglacial spatiotemporal peatland initiation and lateral expansion dynamics in North America and northern Europe. Holocene 23, 1596–1606 (2013).
Google Scholar
Comas, X., Slater, L. & Reeve, A. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. J. Hydrol. 295, 173–184 (2004).
Google Scholar
Comas, X. et al. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences 12, 2995–3007 (2015).
Google Scholar
Suhip, M. A. A., Gödeke, S. H., Cobb, A. R. & Sukri, R. S. Seismic refraction study, single well test and physical core analysis of anthropogenic degraded peat at the Badas Peat Dome, Brunei Darussalam. Eng. Geol. 273, 105689 (2020).
Google Scholar
Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).
Google Scholar
Korhola, A., Tolonen, K., Turunen, J. & Jungner, H. Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon 37, 575–584 (1995).
Google Scholar
Dommain, R. et al. Forest dynamics and tip-up pools drive pulses of high carbon accumulation rates in a tropical peat dome in Borneo (Southeast Asia). J. Geophys. Res. Biogeosci. 120, 617–640 (2015).
Google Scholar
Schipper, L. A. & McLeod, M. Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand. Soil Use Manag. 18, 91–93 (2006).
Google Scholar