Strange IndiaStrange India


  • Huang, Q. & Zheng, Z. Pathway to developing permeable electronics. ACS Nano 16, 15537–15544 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Z. et al. Recent advances in breathable electronics. Nano Res. 16, 4130–4142 (2023).

    Article 
    ADS 

    Google Scholar 

  • Yang, J. et al. Toward a new generation of permeable skin electronics. Nanoscale 15, 3051–3078 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, L. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ma, Z. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5, 749–758 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, Y.-S. et al. Elastic electronics based on micromesh-structured rubbery semiconductor films. Nat. Electron. 5, 881–892 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9, eadg1837 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, E. et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5, 759–771 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, X. et al. Programming 3D curved mesosurfaces using microlattice designs. Science 379, 1225–1232 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shimura, T., Sato, S., Zalar, P. & Matsuhisa, N. Engineering the comfort-of-wear for next generation wearables. Adv. Electron. Mater. 9, 2200512 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, F., Huang, Q. & Zheng, Z. Permeable conductors for wearable and on-skin electronics. Small Struct. 3, 2100135 (2022).

    Article 

    Google Scholar 

  • Li, Q. et al. Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS Nano 15, 9955–9966 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, S. et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35, 2206793 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, X. et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 6, eaba9624 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, W. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc. Natl Acad. Sci. 118, e2111904118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nayeem, M. O. G. et al. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl Acad. Sci. 117, 7063–7070 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jang, K.-I. et al. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xiong, J. et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat. Commun. 9, 4280 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35, 2209300 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zheng, S. et al. Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, 2106570 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6, eabb7043 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023).

    Google Scholar 

  • Chen, H. et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Topological liquid diode. Sci. Adv. 3, eaao3530 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, N. A. S. & Machado-Moreira, C. A. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem. Physiol. Med. 2, 4 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, C. J. & Havenith, G. Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur. J. Appl. Physiol. 111, 1391–1404 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Godek, S. F., Bartolozzi, A. R. & Godek, J. J. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br. J. Sports Med. 39, 205–211 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lao, L., Shou, D., Wu, Y. S. & Fan, J. T. “Skin-like” fabric for personal moisture management. Sci. Adv. 6, eaaz0013 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *