Cubillos, P. et al. An overabundance of low-density Neptune-like planets. Mon. Not. R. Astron. Soc. 466, 1868–1879 (2017).
Google Scholar
Leleu, A. et al. Removing biases on the density of sub-Neptunes characterised via transit timing variations. Update on the mass-radius relationship of 34 Kepler planets. Astron. Astrophys. 669, A117 (2023).
Google Scholar
Díaz, M. R. et al. The Magellan/PFS Exoplanet Search: a 55-d period dense Neptune transiting the bright (V = 8.6) star HD 95338. Mon. Not. R. Astron. Soc. 496, 4330–4341 (2020).
Google Scholar
Armstrong, D. J. et al. A remnant planetary core in the hot-Neptune desert. Nature 583, 39–42 (2020).
Google Scholar
Persson, C. M. et al. TOI-2196 b: rare planet in the hot Neptune desert transiting a G-type star. Astron. Astrophys. 666, 39–42 (2022).
Google Scholar
Mazeh, T. et al. Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. Astron. Astrophys. 589, A75 (2016).
Google Scholar
Ciardi, D. R. et al. Understanding the effects of stellar multiplicity on the derived planet radii from transit surveys: implications for Kepler, K2, and TESS. Astrophys. J. 805, 16 (2015).
Google Scholar
Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).
Google Scholar
König, P. C. et al. A warm super-Neptune around the G-dwarf star TOI-1710 revealed with TESS, SOPHIE, and HARPS-N. Astron. Astrophys. 666, A183 (2022).
Google Scholar
Naponiello, L. et al. The GAPS programme at TNG. XL. A puffy and warm Neptune-sized planet and an outer Neptune-mass candidate orbiting the solar-type star TOI-1422. Astron. Astrophys. 667, A8 (2022).
Google Scholar
Cosentino, R. et al. Harps-N: the new planet hunter at TNG. Proc. SPIE 8446, 657–676 (2012).
Owen, J. E. & Lai, D. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 479, 5012–5021 (2018).
Google Scholar
Kubyshkina, D. & Fossati, L. The mass-radius relation of intermediate-mass planets outlined by hydrodynamic escape and thermal evolution. Astron. Astrophys. 668, A178 (2022).
Google Scholar
Zeng, L. et al. New perspectives on the exoplanet radius gap from a Mathematica tool and visualized water equation of state. Astrophys. J. 923, 247 (2021).
Google Scholar
Bodenheimer, P. et al. New formation models for the Kepler-36 system. Astrophys. J. 868, 138 (2018).
Google Scholar
Vazan, A. et al. A new perspective on the interiors of ice-rich planets: ice–rock mixture instead of ice on top of rock. Astrophys. J. 926, 150 (2022).
Google Scholar
Kovačević, T. et al. Miscibility of rock and ice in the interiors of water worlds. Sci. Rep. 12, 13055 (2022).
Google Scholar
Stevenson, D. J. et al. Mixing of condensable constituents with H–He during the formation and evolution of Jupiter. Planet. Sci. J. 3, 74 (2022).
Google Scholar
Dorn, C. et al. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017).
Google Scholar
Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).
Google Scholar
Mousis, O. et al. Irradiated ocean planets bridge super-Earth and sub-Neptune populations. Astrophys. J. Lett. 896, L22 (2020).
Google Scholar
Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).
Google Scholar
Safronov, V. S. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Keter, 1972).
Lissauer, J. J. Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987).
Google Scholar
Sun, L. et al. Kepler-411: a four-planet system with an active host star. Astron. Astrophys. 624, A15 (2019).
Google Scholar
Beaugé, C. & Nesvorný, D. Multiple-planet scattering and the origin of hot Jupiters. Astrophys. J. 751, 119 (2012).
Google Scholar
Beaugé, C. & Nesvorný, D. Emerging trends in a period–radius distribution of close-in planets. Astrophys. J. 763, 12 (2013).
Google Scholar
Owen, J. E. Atmospheric escape and the evolution of close-in exoplanets. Annu. Rev. Earth Planet. Sci. 47, 67–90 (2019).
Google Scholar
Southworth, J. Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves. Mon. Not. R. Astron. Soc. 417, 2166–2196 (2011).
Google Scholar
Huang, C. X. et al. Photometry of 10 million stars from the first two years of TESS full frame images: part I. Res. Notes Am. Astron. Soc. 4, 204 (2020).
Google Scholar
Guerrero, N. M. et al. The TESS Objects of Interest Catalog from the TESS Prime Mission. Astrophys. J. 254, 39 (2021).
Google Scholar
Jenkins, J. M. et al. The TESS science processing operations center. Proc. SPIE 9913, 1232–1251 (2016).
Caldwell, D. A. et al. TESS science processing operations center FFI target list products. Res. Notes Am. Astron. Soc. 4, 201, (2020).
Google Scholar
Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac. 126, 100 (2014).
Google Scholar
Smith, J. C. et al. Kepler presearch data conditioning II – a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).
Google Scholar
Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002).
Google Scholar
Jenkins, J. M. et al. in Kepler Data Processing Handbook (ed. Jenkins, J. M.) Ch. 9 (NASA Ames Research Center, 2020).
Twicken, J. D. et al. Kepler data validation I—architecture, diagnostic tests, and data products for vetting transiting planet candidates. Publ. Astron. Soc. Pac. 130, 064502 (2018).
Google Scholar
Li, J. et al. Kepler data validation II-transit model fitting and multiple-planet search. Publ. Astron. Soc. Pac. 131, 024506 (2019).
Google Scholar
Kipping, D. M. Binning is sinning: morphological light-curve distortions due to finite integration time. Mon. Not. R. Astron. Soc. 408, 1758–1769 (2010).
Google Scholar
Nardiello, D. A PSF-based approach to TESS high quality data of stellar clusters (PATHOS) – I. Mon. Not. R. Astron. Soc. 490, 3806–3823 (2019).
Google Scholar
Collins, K. TESS Follow-up Observing Program Working Group (TFOP WG) Sub Group 1 (SG1): Ground-based time-series photometry. In 23rd Meeting of the American Astronomical Society ID140.05 (AAS, 2019).
Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).
Google Scholar
Brown, T. M. et al. Las Cumbres Observatory global telescope network. Publ. Astron. Soc. Pac. 125, 1031–1055 (2013).
Google Scholar
Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).
Google Scholar
Wizinowich, P. et al. First light adaptive optics images from the Keck II telescope: a new era of high angular resolution imagery. Publ. Astron. Soc. Pac. 112, 315–319 (2000).
Google Scholar
Furlan, E. et al. The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. Astron. J. 153, 71 (2017).
Google Scholar
Ziegler, C. et al. SOAR TESS survey. I. Sculpting of TESS planetary systems by stellar companions. Astron. J. 159, 19 (2020).
Google Scholar
Scott, N. J. et al. Twin high-resolution, high-speed imagers for the Gemini telescopes: instrument description and science verification results. Front. Astron. Space Sci. 8, 716560 (2021).
Google Scholar
Howell, S. B., Everett, M. E., Sherry, W., Horch, E. & Ciardi, D. R. Speckle camera observations for the NASA Kepler mission follow-up program. Astron. J. 142, 19 (2011).
Google Scholar
Tokovinin, A. Ten years of speckle interferometry at SOAR. Publ. Astron. Soc. Pac. 130, 035002 (2018).
Google Scholar
Dumusque, X. Extremely precise HARPS-N solar RV to overcome the challenge of stellar signal. Plato Mission Conference 2021. In PLATO Mission Conference 2021 106 (2021).
Anglada-Escudé, G. The HARPS-TERRA project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. Ser. 200, 15 (2012).
Google Scholar
Malavolta, L. et al. The Kepler-19 system: a thick-envelope super-Earth with two Neptune-mass companions characterized using radial velocities and transit timing variations. Astron. J. 153, 224 (2017).
Google Scholar
Biazzo, K. et al. The GAPS programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet-hosting binary. Astron. Astrophys. 583, A135 (2015).
Google Scholar
Biazzo, K. et al. The GAPS Programme at TNG. XXXV. Fundamental properties of transiting exoplanet host stars. Astron. Astrophys. 664, A161 (2022).
Google Scholar
Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres Vol. 210 (eds Piskunov, N., Weiss, W. W. & Gray, D. F.) poster A20 (International Astronomical Union, 2003).
Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).
Google Scholar
Brewer, J. M., Fischer, D. A., Valenti, J. A. & Piskunov, N. Spectral properties of cool stars: extended abundance analysis of 1,617 planet-search stars. Astrophys. J. 225, 32 (2016).
Google Scholar
Eastman, J. EXOFASTv2: generalized publication-quality exoplanet modeling code. Record ascl:1710.003 (Astrophysics Source Code Library, 2017).
Ter Braak, C. J. F. A Markov chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. 220, 15 (2015).
Google Scholar
Henden, A. A. et al. AAVSO Photometric All Sky Survey (APASS) DR9 (Henden+, 2016): VizieR Online Data Catalog II/336 (VizieR Online Data Catalog, 2016).
Cutri, R. M. et al. 2MASS All Sky Catalog of Point Sources (NASA/IPAC Infrared Science Archive, 2003).
Cutri, R. M. et al. AllWISE Data Release (Cutri+ 2013): VizieR On-line Data Catalog II/328 (VizieR Online Data Catalog, 2021).
Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys 674, A1 (2023).
Google Scholar
Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).
Google Scholar
Demarque, P., Woo, J.-H., Kim, Y,-C. & Yi, S. K. Y2 isochrones with an improved core overshoot treatment. Astrophys. J. 155, 667–674 (2004).
Google Scholar
Dotter, A., Chaboyer, B., Jevremovic, D. & Kostov, V. The Dartmouth stellar evolution database. Astrophys. J. 178, 89–101 (2008).
Google Scholar
Zechmeister, M. & Kürster, M. The Generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).
Google Scholar
Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Google Scholar
Espinoza, N., Kossakowski, D. & Brahm, R. juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems. Mon. Not. R. Astron. Soc. 490, 2262–2283 (2019).
Google Scholar
Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).
Google Scholar
Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).
Google Scholar
Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O’Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 252–265 (2015).
Google Scholar
Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).
Google Scholar
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Google Scholar
Bryson, S. T. et al. in Kepler Data Processing Handbook (ed. Jenkins, J. M.) Ch. 3 (NASA Ames Research Center, 2020).
Twicken, J. D. et al. Photometric analysis in the Kepler Science Operations Center pipeline. Proc. SPIE 7740, 749–760 (2010).
Morris, R. L. et al. in Kepler Data Processing Handbook (ed. Jenkins, J. M.) Ch. 6 (NASA Ames Research Center, 2020).
Espinoza, N. Efficient joint sampling of impact parameters and transit depths in transiting exoplanet light curves. Res. Notes Am. Astron. Soc. 2, 209 (2018).
Google Scholar
Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).
Google Scholar
Claret, A. Limb and gravity-darkening coefficients for the TESS satellite at several metallicities, surface gravities, and microturbulent velocities. Astron. Astrophys. 600, A30 (2017).
Google Scholar
Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).
Google Scholar
Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 1180–1191 (2007).
Google Scholar
Barker, A. J. Tidal dissipation in evolving low-mass and solar-type stars with predictions for planetary orbital decay. Mon. Not. R. Astron. Soc. 498, 2270–2294 (2020).
Google Scholar
Metzger, B. D., Giannios, D. & Spiegel, D. S. Optical and X-ray transients from planet–star mergers. Mon. Not. R. Astron. Soc. 425, 2778–2798 (2012).
Google Scholar
Collier Cameron, A. & Jardine, M. Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters. Mon. Not. R. Astron. Soc. 476, 2542–2555 (2018).
Google Scholar
Lai, D. Tidal dissipation in planet-hosting stars: damping of spin–orbit misalignment and survival of hot Jupiters. Mon. Not. R. Astron. Soc. 423, 486–492 (2012).
Google Scholar
Leconte, J., Chabrier, G., Baraffe, I. & Levrard, B. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010).
Google Scholar
Holzapfel, W. B. Coherent thermodynamic model for solid, liquid and gas phases of elements and simple compounds in wide ranges of pressure and temperature. Solid State Sci. 80, 31–34 (2018).
Google Scholar
Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998).
Google Scholar
Denman, T. R. et al. Atmosphere loss in planet–planet collisions. Mon. Not. R. Astron. Soc. 496, 1166–1181 (2020).
Google Scholar
Denman, T. R. et al. Atmosphere loss in oblique Super-Earth collisions. Mon. Not. R. Astron. Soc. 513, 1680–1700 (2022).
Google Scholar
Chambers, J. E. et al. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224, 43–56 (2013).
Google Scholar
Quintana, E. V. et al. The frequency of giant impacts on Earth-like worlds. Astron. J. 821, 126 (2016).
Google Scholar
Genda, H. & Abe, Y. Enhanced atmospheric loss on proto-planets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005).
Google Scholar
Schaller, M., Gonnet, P., Chalk, A. B. & Draper, P. W. in Proc. Platform for Advanced Scientific Computing Conference Article No. 2 (ACM, 2016).
Ruiz-Bonilla, S. et al. The effect of pre-impact spin on the Moon-forming collision. Mon. Not. R. Astron. Soc. 500, 2861–2870 (2020).
Google Scholar
Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).
Google Scholar
Haldemann, J., Alibert, Y., Mordasini, C. & Benz, W. AQUA: a collection of H2O equations of state for planetary models. Astron. Astrophys. 643, A105 (2020).
Google Scholar
Hubbard, W. B. & MacFarlane, J. J. Structure and evolution of Uranus and Neptune. J. Geophys. Res. Solid Earth 85, 225–234 (1980).
Google Scholar
Stewart, S. T. et al. Equation of state model Forsterite-ANEOS-SLVTv1.0G1: documentation and comparisons. Zenodo https://zenodo.org/record/3478631 (2019).
Marcus, R. A., Stewart, S. T., Sasselov, D. & Hernquist, L. Collisional stripping and disruption of super-Earths. Astrophys. J. 700, L118–L122 (2009).
Google Scholar
Carter, P. J., Leinhardt, Z. M., Elliott, T., Stewart, S. T. & Walter, M. J. Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018).
Google Scholar
Fossati, L. et al. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90 (2017).
Google Scholar
Locci, D., Cecchi-Pestellini, C. & Micela, G. Photo-evaporation of close-in gas giants orbiting around G and M stars. Astron. Astrophys. 624, A101 (2019).
Google Scholar
Maggio, A. et al. New constraints on the future evaporation of the young exoplanets in the V1298 Tau system. Astrophys. J. 925, 172 (2022).
Google Scholar
Eggleton, P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).
Google Scholar
Koskinen, T. T. et al. Mass loss by atmospheric escape from extremely close-in planets. Astrophys. J. 929, 52 (2022).
Google Scholar
Rappaport, S. et al. The Roche limit for close-orbiting planets: minimum density, composition constraints, and application to the 4.2 hr planet KOI 1843.03. Astrophys. J. Lett. 773, L15 (2013).
Google Scholar
Jackson, B. et al. A new model of Roche lobe overflow for short-period gaseous planets and binary stars. Astrophys. J. 835, 145 (2017).
Google Scholar
Kempton, E. M.-R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).
Google Scholar
Bean, J. L. et al. The Transiting Exoplanet Community Early Release Science Program for JWST. Publ. Astron. Soc. Pac. 130, 114402 (2018).
Google Scholar
Cubillos, P. E. & Blecic, J. The PYRAT BAY framework for exoplanet atmospheric modelling: a population study of Hubble/WFC3 transmission spectra. Mon. Not. R. Astron. Soc. 505, 2675–2702 (2021).
Google Scholar
Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).
Google Scholar
Tennyson, J. et al. The 2020 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 255, 107228 (2020).
Google Scholar
Cubillos, P. E. An algorithm to compress line-transition data for radiative-transfer calculations. Astrophys. J. 850, 32 (2017).
Google Scholar
Borysow, J., Frommhold, L. & Birnbaum, G. Collision-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K. Astrophys. J. 326, 509 (1988).
Google Scholar
Borysow, A., Jorgensen, U. G. & Fu, Y. High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001).
Google Scholar
Kurucz, R. L. Atlas: A Computer Program for Calculating Model Stellar Atmospheres SAO Special Report No. 309 (Smithsonian Institution, Astrophysical Observatory, 1970).
Batalha, N. E. et al. PandExo: a community tool for transiting exoplanet science with JWST & HST. Publ. Astron. Soc. Pac. 129, 064501 (2017).
Google Scholar
Morley, C. V. et al. Thermal emission and reflected light spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).
Google Scholar
Naponiello, L. et al. A super-massive Neptune-sized planet. Zenodo https://doi.org/10.5281/zenodo.8033965 (2023).