Strange IndiaStrange India


  • Cubillos, P. et al. An overabundance of low-density Neptune-like planets. Mon. Not. R. Astron. Soc. 466, 1868–1879 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Leleu, A. et al. Removing biases on the density of sub-Neptunes characterised via transit timing variations. Update on the mass-radius relationship of 34 Kepler planets. Astron. Astrophys. 669, A117 (2023).

    Article 
    CAS 

    Google Scholar 

  • Díaz, M. R. et al. The Magellan/PFS Exoplanet Search: a 55-d period dense Neptune transiting the bright (V = 8.6) star HD 95338. Mon. Not. R. Astron. Soc. 496, 4330–4341 (2020).

    Article 
    ADS 

    Google Scholar 

  • Armstrong, D. J. et al. A remnant planetary core in the hot-Neptune desert. Nature 583, 39–42 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Persson, C. M. et al. TOI-2196 b: rare planet in the hot Neptune desert transiting a G-type star. Astron. Astrophys. 666, 39–42 (2022).

    Article 

    Google Scholar 

  • Mazeh, T. et al. Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. Astron. Astrophys. 589, A75 (2016).

    Article 

    Google Scholar 

  • Ciardi, D. R. et al. Understanding the effects of stellar multiplicity on the derived planet radii from transit surveys: implications for Kepler, K2, and TESS. Astrophys. J. 805, 16 (2015).

    Article 
    ADS 

    Google Scholar 

  • Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article 

    Google Scholar 

  • König, P. C. et al. A warm super-Neptune around the G-dwarf star TOI-1710 revealed with TESS, SOPHIE, and HARPS-N. Astron. Astrophys. 666, A183 (2022).

    Article 

    Google Scholar 

  • Naponiello, L. et al. The GAPS programme at TNG. XL. A puffy and warm Neptune-sized planet and an outer Neptune-mass candidate orbiting the solar-type star TOI-1422. Astron. Astrophys. 667, A8 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cosentino, R. et al. Harps-N: the new planet hunter at TNG. Proc. SPIE 8446, 657–676 (2012).

    Google Scholar 

  • Owen, J. E. & Lai, D. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Mon. Not. R. Astron. Soc. 479, 5012–5021 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kubyshkina, D. & Fossati, L. The mass-radius relation of intermediate-mass planets outlined by hydrodynamic escape and thermal evolution. Astron. Astrophys. 668, A178 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zeng, L. et al. New perspectives on the exoplanet radius gap from a Mathematica tool and visualized water equation of state. Astrophys. J. 923, 247 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bodenheimer, P. et al. New formation models for the Kepler-36 system. Astrophys. J. 868, 138 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vazan, A. et al. A new perspective on the interiors of ice-rich planets: ice–rock mixture instead of ice on top of rock. Astrophys. J. 926, 150 (2022).

    Article 
    ADS 

    Google Scholar 

  • Kovačević, T. et al. Miscibility of rock and ice in the interiors of water worlds. Sci. Rep. 12, 13055 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stevenson, D. J. et al. Mixing of condensable constituents with H–He during the formation and evolution of Jupiter. Planet. Sci. J. 3, 74 (2022).

    Article 

    Google Scholar 

  • Dorn, C. et al. A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017).

    Article 

    Google Scholar 

  • Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mousis, O. et al. Irradiated ocean planets bridge super-Earth and sub-Neptune populations. Astrophys. J. Lett. 896, L22 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).

    Article 
    ADS 

    Google Scholar 

  • Safronov, V. S. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Keter, 1972).

  • Lissauer, J. J. Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987).

    Article 
    ADS 

    Google Scholar 

  • Sun, L. et al. Kepler-411: a four-planet system with an active host star. Astron. Astrophys. 624, A15 (2019).

    Article 

    Google Scholar 

  • Beaugé, C. & Nesvorný, D. Multiple-planet scattering and the origin of hot Jupiters. Astrophys. J. 751, 119 (2012).

    Article 
    ADS 

    Google Scholar 

  • Beaugé, C. & Nesvorný, D. Emerging trends in a period–radius distribution of close-in planets. Astrophys. J. 763, 12 (2013).

    Article 
    ADS 

    Google Scholar 

  • Owen, J. E. Atmospheric escape and the evolution of close-in exoplanets. Annu. Rev. Earth Planet. Sci. 47, 67–90 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Southworth, J. Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves. Mon. Not. R. Astron. Soc. 417, 2166–2196 (2011).

    Article 
    ADS 

    Google Scholar 

  • Huang, C. X. et al. Photometry of 10 million stars from the first two years of TESS full frame images: part I. Res. Notes Am. Astron. Soc. 4, 204 (2020).

    ADS 

    Google Scholar 

  • Guerrero, N. M. et al. The TESS Objects of Interest Catalog from the TESS Prime Mission. Astrophys. J. 254, 39 (2021).

    Article 

    Google Scholar 

  • Jenkins, J. M. et al. The TESS science processing operations center. Proc. SPIE 9913, 1232–1251 (2016).

    Google Scholar 

  • Caldwell, D. A. et al. TESS science processing operations center FFI target list products. Res. Notes Am. Astron. Soc. 4, 201, (2020).

    ADS 

    Google Scholar 

  • Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac. 126, 100 (2014).

    Article 
    ADS 

    Google Scholar 

  • Smith, J. C. et al. Kepler presearch data conditioning II – a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).

    Article 
    ADS 

    Google Scholar 

  • Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002).

    Article 
    ADS 

    Google Scholar 

  • Jenkins, J. M. et al. in Kepler Data Processing Handbook (ed. Jenkins, J. M.) Ch. 9 (NASA Ames Research Center, 2020).

  • Twicken, J. D. et al. Kepler data validation I—architecture, diagnostic tests, and data products for vetting transiting planet candidates. Publ. Astron. Soc. Pac. 130, 064502 (2018).

    Article 
    ADS 

    Google Scholar 

  • Li, J. et al. Kepler data validation II-transit model fitting and multiple-planet search. Publ. Astron. Soc. Pac. 131, 024506 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kipping, D. M. Binning is sinning: morphological light-curve distortions due to finite integration time. Mon. Not. R. Astron. Soc. 408, 1758–1769 (2010).

    Article 
    ADS 

    Google Scholar 

  • Nardiello, D. A PSF-based approach to TESS high quality data of stellar clusters (PATHOS) – I. Mon. Not. R. Astron. Soc. 490, 3806–3823 (2019).

    Article 
    ADS 

    Google Scholar 

  • Collins, K. TESS Follow-up Observing Program Working Group (TFOP WG) Sub Group 1 (SG1): Ground-based time-series photometry. In 23rd Meeting of the American Astronomical Society ID140.05 (AAS, 2019).

  • Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).

    ADS 

    Google Scholar 

  • Brown, T. M. et al. Las Cumbres Observatory global telescope network. Publ. Astron. Soc. Pac. 125, 1031–1055 (2013).

    Article 
    ADS 

    Google Scholar 

  • Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).

    Article 
    ADS 

    Google Scholar 

  • Wizinowich, P. et al. First light adaptive optics images from the Keck II telescope: a new era of high angular resolution imagery. Publ. Astron. Soc. Pac. 112, 315–319 (2000).

    Article 
    ADS 

    Google Scholar 

  • Furlan, E. et al. The Kepler follow-up observation program. I. A catalog of companions to Kepler stars from high-resolution imaging. Astron. J. 153, 71 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ziegler, C. et al. SOAR TESS survey. I. Sculpting of TESS planetary systems by stellar companions. Astron. J. 159, 19 (2020).

    Article 
    ADS 

    Google Scholar 

  • Scott, N. J. et al. Twin high-resolution, high-speed imagers for the Gemini telescopes: instrument description and science verification results. Front. Astron. Space Sci. 8, 716560 (2021).

    Article 

    Google Scholar 

  • Howell, S. B., Everett, M. E., Sherry, W., Horch, E. & Ciardi, D. R. Speckle camera observations for the NASA Kepler mission follow-up program. Astron. J. 142, 19 (2011).

    Article 
    ADS 

    Google Scholar 

  • Tokovinin, A. Ten years of speckle interferometry at SOAR. Publ. Astron. Soc. Pac. 130, 035002 (2018).

    Article 
    ADS 

    Google Scholar 

  • Dumusque, X. Extremely precise HARPS-N solar RV to overcome the challenge of stellar signal. Plato Mission Conference 2021. In PLATO Mission Conference 2021 106 (2021).

  • Anglada-Escudé, G. The HARPS-TERRA project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. Astrophys. J. Suppl. Ser. 200, 15 (2012).

    Article 
    ADS 

    Google Scholar 

  • Malavolta, L. et al. The Kepler-19 system: a thick-envelope super-Earth with two Neptune-mass companions characterized using radial velocities and transit timing variations. Astron. J. 153, 224 (2017).

    Article 
    ADS 

    Google Scholar 

  • Biazzo, K. et al. The GAPS programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet-hosting binary. Astron. Astrophys. 583, A135 (2015).

    Article 

    Google Scholar 

  • Biazzo, K. et al. The GAPS Programme at TNG. XXXV. Fundamental properties of transiting exoplanet host stars. Astron. Astrophys. 664, A161 (2022).

    Article 
    CAS 

    Google Scholar 

  • Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres Vol. 210 (eds Piskunov, N., Weiss, W. W. & Gray, D. F.) poster A20 (International Astronomical Union, 2003).

  • Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Brewer, J. M., Fischer, D. A., Valenti, J. A. & Piskunov, N. Spectral properties of cool stars: extended abundance analysis of 1,617 planet-search stars. Astrophys. J. 225, 32 (2016).

    Article 

    Google Scholar 

  • Eastman, J. EXOFASTv2: generalized publication-quality exoplanet modeling code. Record ascl:1710.003 (Astrophysics Source Code Library, 2017).

  • Ter Braak, C. J. F. A Markov chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. 220, 15 (2015).

    Article 

    Google Scholar 

  • Henden, A. A. et al. AAVSO Photometric All Sky Survey (APASS) DR9 (Henden+, 2016): VizieR Online Data Catalog II/336 (VizieR Online Data Catalog, 2016).

  • Cutri, R. M. et al. 2MASS All Sky Catalog of Point Sources (NASA/IPAC Infrared Science Archive, 2003).

  • Cutri, R. M. et al. AllWISE Data Release (Cutri+ 2013): VizieR On-line Data Catalog II/328 (VizieR Online Data Catalog, 2021).

  • Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys 674, A1 (2023).

    Article 

    Google Scholar 

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar 

  • Demarque, P., Woo, J.-H., Kim, Y,-C. & Yi, S. K. Y2 isochrones with an improved core overshoot treatment. Astrophys. J. 155, 667–674 (2004).

    Article 

    Google Scholar 

  • Dotter, A., Chaboyer, B., Jevremovic, D. & Kostov, V. The Dartmouth stellar evolution database. Astrophys. J. 178, 89–101 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zechmeister, M. & Kürster, M. The Generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).

    Article 
    ADS 

    Google Scholar 

  • Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article 
    ADS 

    Google Scholar 

  • Espinoza, N., Kossakowski, D. & Brahm, R. juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems. Mon. Not. R. Astron. Soc. 490, 2262–2283 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kreidberg, L. batman: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article 
    ADS 

    Google Scholar 

  • Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O’Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 252–265 (2015).

    Article 
    ADS 

    Google Scholar 

  • Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article 
    ADS 

    Google Scholar 

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bryson, S. T. et al. in Kepler Data Processing Handbook (ed. Jenkins, J. M.) Ch. 3 (NASA Ames Research Center, 2020).

  • Twicken, J. D. et al. Photometric analysis in the Kepler Science Operations Center pipeline. Proc. SPIE 7740, 749–760 (2010).

    Google Scholar 

  • Morris, R. L. et al. in Kepler Data Processing Handbook (ed. Jenkins, J. M.) Ch. 6 (NASA Ames Research Center, 2020).

  • Espinoza, N. Efficient joint sampling of impact parameters and transit depths in transiting exoplanet light curves. Res. Notes Am. Astron. Soc. 2, 209 (2018).

    ADS 

    Google Scholar 

  • Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    Article 
    ADS 

    Google Scholar 

  • Claret, A. Limb and gravity-darkening coefficients for the TESS satellite at several metallicities, surface gravities, and microturbulent velocities. Astron. Astrophys. 600, A30 (2017).

    Article 
    ADS 

    Google Scholar 

  • Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 1180–1191 (2007).

    Article 
    ADS 

    Google Scholar 

  • Barker, A. J. Tidal dissipation in evolving low-mass and solar-type stars with predictions for planetary orbital decay. Mon. Not. R. Astron. Soc. 498, 2270–2294 (2020).

    Article 
    ADS 

    Google Scholar 

  • Metzger, B. D., Giannios, D. & Spiegel, D. S. Optical and X-ray transients from planet–star mergers. Mon. Not. R. Astron. Soc. 425, 2778–2798 (2012).

    Article 
    ADS 

    Google Scholar 

  • Collier Cameron, A. & Jardine, M. Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters. Mon. Not. R. Astron. Soc. 476, 2542–2555 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lai, D. Tidal dissipation in planet-hosting stars: damping of spin–orbit misalignment and survival of hot Jupiters. Mon. Not. R. Astron. Soc. 423, 486–492 (2012).

    Article 
    ADS 

    Google Scholar 

  • Leconte, J., Chabrier, G., Baraffe, I. & Levrard, B. Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron. Astrophys. 516, A64 (2010).

    Article 
    ADS 

    Google Scholar 

  • Holzapfel, W. B. Coherent thermodynamic model for solid, liquid and gas phases of elements and simple compounds in wide ranges of pressure and temperature. Solid State Sci. 80, 31–34 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Duncan, M. J., Levison, H. F. & Lee, M. H. A multiple time step symplectic algorithm for integrating close encounters. Astron. J. 116, 2067–2077 (1998).

    Article 
    ADS 

    Google Scholar 

  • Denman, T. R. et al. Atmosphere loss in planet–planet collisions. Mon. Not. R. Astron. Soc. 496, 1166–1181 (2020).

    Article 
    ADS 

    Google Scholar 

  • Denman, T. R. et al. Atmosphere loss in oblique Super-Earth collisions. Mon. Not. R. Astron. Soc. 513, 1680–1700 (2022).

    Article 
    ADS 

    Google Scholar 

  • Chambers, J. E. et al. Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224, 43–56 (2013).

    Article 
    ADS 

    Google Scholar 

  • Quintana, E. V. et al. The frequency of giant impacts on Earth-like worlds. Astron. J. 821, 126 (2016).

    Article 

    Google Scholar 

  • Genda, H. & Abe, Y. Enhanced atmospheric loss on proto-planets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schaller, M., Gonnet, P., Chalk, A. B. & Draper, P. W. in Proc. Platform for Advanced Scientific Computing Conference Article No. 2 (ACM, 2016).

  • Ruiz-Bonilla, S. et al. The effect of pre-impact spin on the Moon-forming collision. Mon. Not. R. Astron. Soc. 500, 2861–2870 (2020).

    Article 
    ADS 

    Google Scholar 

  • Stewart, S. et al. The shock physics of giant impacts: key requirements for the equations of state. AIP Conf. Proc. 2272, 080003 (2020).

    Article 

    Google Scholar 

  • Haldemann, J., Alibert, Y., Mordasini, C. & Benz, W. AQUA: a collection of H2O equations of state for planetary models. Astron. Astrophys. 643, A105 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hubbard, W. B. & MacFarlane, J. J. Structure and evolution of Uranus and Neptune. J. Geophys. Res. Solid Earth 85, 225–234 (1980).

    Article 
    CAS 

    Google Scholar 

  • Stewart, S. T. et al. Equation of state model Forsterite-ANEOS-SLVTv1.0G1: documentation and comparisons. Zenodo https://zenodo.org/record/3478631 (2019).

  • Marcus, R. A., Stewart, S. T., Sasselov, D. & Hernquist, L. Collisional stripping and disruption of super-Earths. Astrophys. J. 700, L118–L122 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Carter, P. J., Leinhardt, Z. M., Elliott, T., Stewart, S. T. & Walter, M. J. Collisional stripping of planetary crusts. Earth Planet. Sci. Lett. 484, 276–286 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fossati, L. et al. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90 (2017).

    Article 

    Google Scholar 

  • Locci, D., Cecchi-Pestellini, C. & Micela, G. Photo-evaporation of close-in gas giants orbiting around G and M stars. Astron. Astrophys. 624, A101 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maggio, A. et al. New constraints on the future evaporation of the young exoplanets in the V1298 Tau system. Astrophys. J. 925, 172 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Eggleton, P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

    Article 
    ADS 

    Google Scholar 

  • Koskinen, T. T. et al. Mass loss by atmospheric escape from extremely close-in planets. Astrophys. J. 929, 52 (2022).

    Article 
    ADS 

    Google Scholar 

  • Rappaport, S. et al. The Roche limit for close-orbiting planets: minimum density, composition constraints, and application to the 4.2 hr planet KOI 1843.03. Astrophys. J. Lett. 773, L15 (2013).

    Article 
    ADS 

    Google Scholar 

  • Jackson, B. et al. A new model of Roche lobe overflow for short-period gaseous planets and binary stars. Astrophys. J. 835, 145 (2017).

    Article 
    ADS 

    Google Scholar 

  • Kempton, E. M.-R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    Article 
    ADS 

    Google Scholar 

  • Bean, J. L. et al. The Transiting Exoplanet Community Early Release Science Program for JWST. Publ. Astron. Soc. Pac. 130, 114402 (2018).

    Article 
    ADS 

    Google Scholar 

  • Cubillos, P. E. & Blecic, J. The PYRAT BAY framework for exoplanet atmospheric modelling: a population study of Hubble/WFC3 transmission spectra. Mon. Not. R. Astron. Soc. 505, 2675–2702 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tennyson, J. et al. The 2020 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Quant. Spectrosc. Radiat. Transf. 255, 107228 (2020).

    Article 
    CAS 

    Google Scholar 

  • Cubillos, P. E. An algorithm to compress line-transition data for radiative-transfer calculations. Astrophys. J. 850, 32 (2017).

    Article 
    ADS 

    Google Scholar 

  • Borysow, J., Frommhold, L. & Birnbaum, G. Collision-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K. Astrophys. J. 326, 509 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Borysow, A., Jorgensen, U. G. & Fu, Y. High-temperature (1000–7000 K) collision-induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kurucz, R. L. Atlas: A Computer Program for Calculating Model Stellar Atmospheres SAO Special Report No. 309 (Smithsonian Institution, Astrophysical Observatory, 1970).

  • Batalha, N. E. et al. PandExo: a community tool for transiting exoplanet science with JWST & HST. Publ. Astron. Soc. Pac. 129, 064501 (2017).

    Article 
    ADS 

    Google Scholar 

  • Morley, C. V. et al. Thermal emission and reflected light spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).

    Article 
    ADS 

    Google Scholar 

  • Naponiello, L. et al. A super-massive Neptune-sized planet. Zenodo https://doi.org/10.5281/zenodo.8033965 (2023).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *