Strange India All Strange Things About India and world


  • Sehgal, A. & Mignot, E. Genetics of sleep and sleep disorders. Cell 146, 194–207 (2011).

    Article 
    CAS 

    Google Scholar 

  • Webb, J. M. & Fu, Y.-H. Recent advances in sleep genetics. Curr. Opin. Neurobiol. 69, 19–24 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, L. & Zhang, L. The molecular mechanism of natural short sleep: a path towards understanding why we need to sleep. Brain Sci. Adv. 8, 165–172 (2022).

    Article 

    Google Scholar 

  • Wang, G. et al. Somatic genetics analysis of sleep in adult mice. J. Neurosci. 42, 5617–5640 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    Article 
    CAS 

    Google Scholar 

  • Walkinshaw, D. R. et al. The tumor suppressor kinase LKB1 activates the downstream kinases SIK2 and SIK3 to stimulate nuclear export of class IIa histone deacetylases. J. Biol. Chem. 288, 9345–9362 (2013).

    Article 
    CAS 

    Google Scholar 

  • Funato, H. et al. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 539, 378–383 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Honda, T. et al. A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc. Natl Acad. Sci. USA 115, 10458–10463 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, X., Song, S., Liu, Y., Ko, S.-H. & Kao, H.-Y. Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J. Biol. Chem. 279, 34201–34208 (2004).

    Article 
    CAS 

    Google Scholar 

  • Wang, A. H. et al. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol. Cell. Biol. 20, 6904–6912 (2000).

    Article 
    CAS 

    Google Scholar 

  • Chen, Z. et al. The role of histone deacetylase 4 during chondrocyte hypertrophy and endochondral bone development. Bone Joint Res. 9, 82–89 (2020).

    Article 

    Google Scholar 

  • Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article 
    CAS 

    Google Scholar 

  • Grubbs, J. J., Lopes, L. E., van der Linden, A. M. & Raizen, D. M. A salt-induced kinase is required for the metabolic regulation of sleep. PLoS Biol. 18, e3000220 (2020).

    Article 
    CAS 

    Google Scholar 

  • Banks, G. T. et al. Forward genetics identifies a novel sleep mutant with sleep state inertia and REM sleep deficits. Sci. Adv. 6, eabb3567 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sunagawa, G. A. et al. Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell Rep. 14, 662–677 (2016).

    Article 
    CAS 

    Google Scholar 

  • Funato, H. & Yanagisawa, M. Hunt for mammalian sleep-regulating genes. Brain Sci. Adv. 7, 75–96 (2021).

    Google Scholar 

  • Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article 
    CAS 

    Google Scholar 

  • Xu, J. et al. Regulation of sleep quantity and intensity by long and short isoforms of SLEEPY kinase. Sleep https://doi.org/10.1093/sleep/zsac198 (2022).

  • Gruffat, H., Manet, E. & Sergeant, A. MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep. 3, 141–146 (2002).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat. Commun. 10, 3469 (2019).

    Article 
    ADS 

    Google Scholar 

  • Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    Article 
    CAS 

    Google Scholar 

  • Chen, B. & Cepko, C. L. HDAC4 regulates neuronal survival in normal and diseased retinas. Science 323, 256–259 (2009).

    Article 
    CAS 

    Google Scholar 

  • Guo, X. et al. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat. Commun. 6, 8005 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443–454 (2014).

    Article 
    CAS 

    Google Scholar 

  • Price, V., Wang, L. & D’Mello, S. R. Conditional deletion of histone deacetylase-4 in the central nervous system has no major effect on brain architecture or neuronal viability. J. Neurosci. Res. 91, 407–415 (2013).

    Article 
    CAS 

    Google Scholar 

  • Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002).

    Article 
    CAS 

    Google Scholar 

  • Gvilia, I., Xu, F., McGinty, D. & Szymusiak, R. Homeostatic regulation of sleep: a role for preoptic area neurons. J. Neurosci. 26, 9426–9433 (2006).

    Article 
    CAS 

    Google Scholar 

  • Kroeger, D. et al. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat. Commun. 9, 4129 (2018).

    Article 
    ADS 

    Google Scholar 

  • Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, E. E. et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139, 199–210 (2009).

    Article 
    CAS 

    Google Scholar 

  • Okamoto, S. et al. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc. Natl Acad. Sci. USA 99, 3974–3979 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kozhemyakina, E., Cohen, T., Yao, T.-P. & Lassar, A. B. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol. Cell. Biol. 29, 5751 (2009).

    Article 
    CAS 

    Google Scholar 

  • Lundell, L. S., Massart, J., Altintas, A., Krook, A. & Zierath, J. R. Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Mol. Metab. 20, 79–88 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ahn, S. et al. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol. Cell Biol. 18, 967–977 (1998).

    Article 
    CAS 

    Google Scholar 

  • Graves, L. A. et al. Genetic evidence for a role of CREB in sustained cortical arousal. J. Neurophysiol. 90, 1152–1159 (2003).

    Article 
    CAS 

    Google Scholar 

  • Hendricks, J. C. et al. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat. Neurosci. 4, 1108–1115 (2001).

    Article 
    CAS 

    Google Scholar 

  • Wimmer, M. E., Cui, R., Blackwell, J. M. & Abel, T. Cyclic AMP response element-binding protein is required in excitatory neurons in the forebrain to sustain wakefulness. Sleep 44, zsaa267 (2020).

    Article 

    Google Scholar 

  • Lamph, W. W., Dwarki, V. J., Ofir, R., Montminy, M. & Verma, I. M. Negative and positive regulation by transcription factor cAMP response element-binding protein is modulated by phosphorylation. Proc. Natl Acad. Sci. USA 87, 4320–4324 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J. et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat. Med. 18, 783–790 (2012).

    Article 

    Google Scholar 

  • Sen, T. & Sen, N. Isoflurane-induced inactivation of CREB through histone deacetylase 4 is responsible for cognitive impairment in developing brain. Neurobiol. Dis. 96, 12–21 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zada, D., Bronshtein, I., Lerer-Goldshtein, T., Garini, Y. & Appelbaum, L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat. Commun. 10, 895 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zada, D. et al. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol. Cell 81, 4979–4993.e4977 (2021).

    Article 
    CAS 

    Google Scholar 

  • Brüning, F. et al. Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366, eaav3617 (2019).

    Article 

    Google Scholar 

  • Wang, Z. et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558, 435–439 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Benito, E., Valor, L. M., Jimenez-Minchan, M., Huber, W. & Barco, A. cAMP response element-binding protein is a primary hub of activity-driven neuronal gene expression. J. Neurosci. 31, 18237–18250 (2011).

    Article 
    CAS 

    Google Scholar 

  • Sando, R. 3rd et al. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151, 821–834 (2012).

    Article 
    CAS 

    Google Scholar 

  • Noya, S. B. et al. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366, eaav2642 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kim, S. J. et al. Kinase signalling in excitatory neurons regulates sleep quantityand depth. Nature https://doi.org/10.1038/s41586-022-05450-1 (2022).

  • Lu, J., McKinsey, T. A., Zhang, C.-L. & Olson, E. N. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol. Cell 6, 233–244 (2000).

    Article 
    CAS 

    Google Scholar 

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article 
    CAS 

    Google Scholar 

  • Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M. & Hoogstraten-Miller, S. Retro-orbital injections in mice. Lab. Anim. 40, 155–160 (2011).

    Article 

    Google Scholar 

  • Zhao, H. et al. Absence of stress response in dorsal raphe nucleus in modulator of apoptosis 1-deficient mice. Mol. Neurobiol. 56, 2185–2201 (2019).

    Article 
    CAS 

    Google Scholar 

  • Christakis, D. A., Ramirez, J. S. & Ramirez, J. M. Overstimulation of newborn mice leads to behavioral differences and deficits in cognitive performance. Sci. Rep. 2, 546 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Horsch, M. et al. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. J. Biol. Chem. 286, 18614–18622 (2011).

    Article 
    CAS 

    Google Scholar 

  • Liu, Q., Xu, Y., Wan, W. & Ma, Z. An unexpected improvement in spatial learning and memory ability in alpha-synuclein A53T transgenic mice. J. Neural Transm. 125, 203–210 (2018).

    Article 
    CAS 

    Google Scholar 

  • Peters, J., Dieppa-Perea, L. M., Melendez, L. M. & Quirk, G. J. Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328, 1288–1290 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Soria-Gomez, E. et al. Habenular CB1 receptors control the expression of aversive memories. Neuron 88, 306–313 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zhang, J. et al. Presynaptic Excitation via GABAB receptors in habenula cholinergic neurons regulates fear memory expression. Cell 166, 716–728 (2016).

    Article 
    CAS 

    Google Scholar 

  • Patti, C. L. et al. Effects of sleep deprivation on memory in mice: role of state-dependent learning. Sleep 33, 1669–1679 (2010).

    Article 

    Google Scholar 

  • Savelyev, S. A., Larsson, K. C., Johansson, A. S. & Lundkvist, G. B. Slice preparation, organotypic tissue culturing and luciferase recording of clock gene activity in the suprachiasmatic nucleus. J. Vis. Exp. 48, 2439 (2011).

    Google Scholar 

  • Mei, L. et al. Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proc. Natl Acad. Sci. USA 115, 4276–4281 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, J. et al. A quick protocol for the preparation of mouse retinal cryosections for immunohistochemistry. Open Biol. 11, 210076 (2021).

    Article 

    Google Scholar 

  • Castel, M., Belenky, M., Cohen, S., Wagner, S. & Schwartz, W. J. Light-induced c-Fos expression in the mouse suprachiasmatic nucleus: immunoelectron microscopy reveals co-localization in multiple cell types. Eur. J. Neurosci. 9, 1950–1960 (1997).

    Article 
    CAS 

    Google Scholar 

  • Xu, P. et al. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 109, 3268–3282 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ju, D. et al. Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Sci. Transl. Med. 12, eaba0769 (2020).

    Article 
    CAS 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article 

    Google Scholar 

  • Ramírez, F., Dündar, F., Diehl, S., Grüning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    Article 

    Google Scholar 

  • Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *