Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020).
Google Scholar
Hou, S. et al. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021).
Google Scholar
Li, M. et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 5, 276–294 (2020).
Google Scholar
Arroyo-de Dompablo, M. E., Ponrouch, A., Johansson, P. & Palacin, M. R. Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120, 6331–6357 (2020).
Google Scholar
Song, H. & Wang, C. Current status and challenges of calcium metal batteries. Adv. Energy Sustain. Res. 3, 2100192 (2022).
Google Scholar
Wang, D. et al. Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16–20 (2018).
Google Scholar
Dong, H. et al. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 5, 1043–1050 (2020).
Google Scholar
Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).
Google Scholar
Ponrouch, A., Frontera, C., Bardé, F. & Palacín, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).
Google Scholar
Lu, Y., Neale, A. R., Hu, C. & Hardwick, L. J. Divalent nonaqueous metal-air batteries. Front. Energy Res. 8, 602918 (2021).
Google Scholar
Wang, M. et al. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018).
Google Scholar
Forero-Saboya, J. et al. Understanding the nature of the passivation layer enabling reversible calcium plating. Energy Environ. Sci. 13, 3423–3431 (2020).
Google Scholar
Zhao-Karger, Z. et al. Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature. Nat. Commun. 13, 3849 (2022).
Google Scholar
Jie, Y. et al. Electrolyte solvation manipulation enables unprecedented room-temperature calcium-metal batteries. Angew. Chem. Int. Ed. 59, 12689–12693 (2020).
Google Scholar
Gao, X. et al. Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. Energy Environ. Sci. 13, 2559–2569 (2020).
Google Scholar
Asadi, M. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 555, 502–506 (2018).
Google Scholar
Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 1, 16128 (2016).
Google Scholar
Chi, X. et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592, 551–557 (2021).
Google Scholar
Pujare, N. U., Semkow, K. W. & Sammells, A. F. A calcium oxygen secondary battery. J. Electrochem. Soc. 135, 260–261 (1988).
Google Scholar
Shiga, T., Kato, Y. & Hase, Y. Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium-oxygen battery. J. Mater. Chem. A 5, 13212–13219 (2017).
Google Scholar
Li, T., Zhang, X,-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).
Google Scholar
Li, Z., Fuhr, O., Fichtner, M. & Zhao-Karger, Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci. 12, 3496–3501 (2019).
Google Scholar
Lai, J. et al. Electrolytes for rechargeable lithium–air batteries. Angew. Chem. Int. Ed. 59, 2974–2997 (2020).
Google Scholar
Ye, L. et al. Stabilizing lithium into cross-stacked nanotube sheets with an ultra-high specific capacity for lithium oxygen batteries. Angew. Chem. Int. Ed. 58, 2437–2442 (2019).
Google Scholar
Nishioka, K. et al. Isotopic depth profiling of discharge products identifies reactive interfaces in an aprotic Li–O2 battery with a redox mediator. J. Am. Chem. Soc. 143, 7394–7401 (2021).
Google Scholar
Jung, H. et al. An improved high-performance lithium–air battery. Nat. Chem. 4, 579–585 (2012).
Google Scholar
Kondori, A. et al. A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 379, 499–505 (2023).
Google Scholar
Shyamsunder, A., Blanc, L. E., Assoud, A. & Nazar, L. F. Reversible calcium plating and stripping at room temperature using a borate salt. ACS Energy Lett. 4, 2271–2276 (2019).
Google Scholar
Ko, S., Yamada, Y. & Yamada, A. An overlooked issue for high-voltage Li-ion batteries: suppressing the intercalation of anions into conductive carbon. Joule 5, 998–1009 (2021).
Google Scholar
Yu, Y. et al. A renaissance of N,N-dimethylacetamide-based electrolytes to promote the cycling stability of Li–O2 batteries. Energy & Environ. Sci. 13, 3075–3081 (2020).
Google Scholar
Feng, S. et al. Molecular design of stable sulfamide- and sulfonamide-based electrolytes for aprotic Li-O2 batteries. Chem 5, 2630–2641 (2019).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1998).
Google Scholar
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Liu, Q. et al. Interlocked CNT networks with high damping and storage modulus. Carbon 86, 46–53 (2015).
Google Scholar
He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).
Google Scholar
Liao, M. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022).
Google Scholar