Strange India All Strange Things About India and world


  • Johnson, M. A., Harper, J. F. & Palanivelu, R. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant. Biol. 70, 809–837 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Denninger, P. et al. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun. 5, 4645 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ngo, Q. A., Vogler, H., Lituiev, D. S., Nestorova, A. & Grossniklaus, U. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev. Cell 29, 491–500 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Escobar-Restrepo, J. M. et al. The FERONIA receptor-like kinase mediates male–female interactions during pollen tube reception. Science 317, 656–660 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, X. et al. The role of LORELEI in pollen tube reception at the interface of the synergid cell and pollen tube requires the modified eight-cysteine motif and the receptor-like kinase FERONIA. Plant Cell 28, 1035–1052 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kessler, S. A. et al. Conserved molecular components for pollen tube reception and fungal invasion. Science 330, 968–971 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ge, Z. et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358, 1596–1600 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blackburn, M. R., Haruta, M. & Moura, D. S. Twenty years of progress in physiological and biochemical investigation of RALF peptides. Plant Physiol. 182, 1657–1666 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trewavas, A. Le calcium, c’est la vie: calcium makes waves. Plant Physiol. 120, 1–6 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luan, S. & Wang, C. Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37, 311–340 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hwang, J. Y. et al. Dual sensing of physiologic pH and calcium by EFCAB9 regulates sperm motility. Cell 177, 1480–1494.e19 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Whitaker, M. Calcium at fertilization and in early development. Physiol. Rev. 86, 25–88 (2006).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, J., Gutjahr, C., Bleckmann, A. & Dresselhaus, T. Calcium signaling during reproduction and biotrophic fungal interactions in plants. Mol. Plant 8, 595–611 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hamamura, Y. et al. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat. Commun. 5, 4722 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iwano, M. et al. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139, 4202–4209 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ge, Z., Dresselhaus, T. & Qu, L. J. How CrRLK1L receptor complexes perceive RALF signals. Trends Plant. Sci. 24, 978–981 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Franck, C. M., Westermann, J. & Boisson-Dernier, A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu. Rev. Plant Biol. 69, 301–328 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, C. et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, e06587 (2015).

    PubMed Central 
    Article 

    Google Scholar 

  • Cheung, A. Y., Qu, L. J., Russinova, E., Zhao, Y. & Zipfel, C. Update on receptors and signaling. Plant Physiol. 182, 1527–1530 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stegmann, M. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287–289 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Xiao, Y. et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270–274 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ge, Z. et al. LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity. Curr. Biol. 29, 3256–3265.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, C. et al. Pollen PCP-B peptides unlock a stigma peptide–receptor kinase gating mechanism for pollination. Science 372, 171–175 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhou, X. et al. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev. Cell 56, 1030–1042.e6 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, K. H. et al. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature 545, 311–316 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kasahara, R. D., Portereiko, M. F., Sandaklie-Nikolova, L., Rabiger, D. S. & Drews, G. N. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17, 2981–2992 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buschges, R. et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Devoto, A. et al. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J. Mol. Evol. 56, 77–88 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kusch, S., Pesch, L. & Panstruga, R. Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol. Evol. 8, 878–895 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, Z. et al. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell 21, 1972–1991 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Consonni, C. et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet. 38, 716–720 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meng, J. G. et al. Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. Nat. Plants 6, 143–153 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pan, Y. et al. Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities. Dev. Cell 48, 710–725.e5 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones, D. S. et al. MILDEW RESISTANCE LOCUS O function in pollen tube reception is linked to its oligomerization and subcellular distribution. Plant Physiol. 175, 172–185 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ju, Y. et al. Polarized NORTIA accumulation in response to pollen tube arrival at synergids promotes fertilization. Dev. Cell 56, 2938–2951.e6 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kessler, S. A., Lindner, H., Jones, D. S. & Grossniklaus, U. Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep. 16, 107–115 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Haruta, M., Gaddameedi, V., Burch, H., Fernandez, D. & Sussman, M. R. Comparison of the effects of a kinase-dead mutation of FERONIA on ovule fertilization and root growth of Arabidopsis. FEBS Lett. 592, 2395–2402 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhong, S. et al. RALF peptide signaling controls the polytubey block in Arabidopsis. Science 375, 290–296 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ben-Johny, M. & Yue, D. T. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J. Gen. Physiol. 143, 679–692 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tian, W., Wang, C., Gao, Q., Li, L. & Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 6, 750–759 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, M. C. et al. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416, 447–451 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tian, W. et al. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131–135 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gao, Q. F. et al. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc. Natl Acad. Sci. USA 113, 3096–3101 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Palanivelu, R. & Preuss, D. Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 6, 7 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, H. et al. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11, 1731–1742 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moussu, S. et al. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc. Natl Acad. Sci. USA 117, 7494–7503 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Duan, Q. et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl Acad. Sci. USA 107, 17821–17826 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *