Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986).
Google Scholar
Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).
Google Scholar
Crick, F. H. C., Brenner, S., Klug, A. & Pieczenik, G. A speculation on the origin of protein synthesis. Orig. Life Evol. Biosph. 7, 389–397 (1976).
Google Scholar
Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).
Google Scholar
Bowman, J. C., Hud, N. V. & Williams, L. D. The ribosome challenge to the RNA world. J. Mol. Evol. 80, 143–161 (2015).
Google Scholar
Decatur, W. A. & Fournier, M. J. rRNA modifications and ribosome function. Trends Biochem. Sci 27, 344–351 (2002).
Google Scholar
Carell, T. et al. Structure and function of noncanonical nucleobases. Angew. Chem. Int. Ed. Engl. 51, 7110–7131 (2012).
Google Scholar
Wong, J. T.-F. Origin of genetically encoded protein synthesis: a model based on selection for RNA peptidation. Orig. Life Evol. Biosph. 21, 165–176 (1991).
Google Scholar
Di Giulio, M. Reflections on the origin of the genetic code: a hypothesis. J. Theor. Biol. 191, 191–196 (1998).
Google Scholar
Rios, A. C. & Tor, Y. On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution. Isr. J. Chem. 53, 469–483 (2013).
Google Scholar
Grosjean, H. & Westhof, E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44, 8020–8040 (2016).
Google Scholar
Beenstock, J. & Sicheri, F. The structural and functional workings of KEOPS. Nucleic Acids Res. 49, 10818–10834 (2021).
Google Scholar
Di Giulio, M. On the RNA world: evidence in favor of an early ribonucleopeptide world. J. Mol. Evol. 45, 571–578 (1997).
Google Scholar
Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).
Google Scholar
Fox, G. E. Origin and evolution of the ribosome. Cold Spring Harb. Perspect. Biol. 2, a003483 (2010).
Google Scholar
Bowman, J. C., Petrov, A. S., Frenkel-Pinter, M., Penev, P. I. & Williams, L. D. Root of the tree: the significance, evolution, and origins of the ribosome. Chem. Rev. 120, 4848–4878 (2020).
Google Scholar
Eigen, M. & Schuster, P. A principle of natural self-organization. Naturwissenschaften 64, 541–565 (1977).
Google Scholar
Szathmáry, E. Coding coenzyme handles: a hypothesis for the origin of the genetic code. Proc. Natl Acad. Sci. USA 90, 9916–9920 (1993).
Google Scholar
Noller, H. F. RNA structure: reading the ribosome. Science 309, 1508–1514 (2005).
Google Scholar
Steitz, T. A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol. 9, 242–253 (2008).
Google Scholar
Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1, 127–136 (2003).
Google Scholar
Woese, C. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).
Google Scholar
Becerra, A., Delaye, L., Islas, S. & Lazcano, A. The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu. Rev. Ecol. Evol. Syst. 38, 361–379 (2007).
Google Scholar
Kuhn, H. Self-organization of molecular systems and evolution of the genetic apparatus. Angew. Chem. Int. Ed. Engl. 11, 798–820 (1972).
Google Scholar
Kuhn, H. & Waser, J. Molecular self-organization and the origin of life. Angew. Chem. Int. Ed. Engl. 20, 500–520 (1981).
Google Scholar
Tamura, K. & Schimmel, P. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Proc. Natl Acad. Sci. USA 98, 1393–1397 (2001).
Google Scholar
Tamura, K. & Schimmel, P. Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. Proc. Natl Acad. Sci. USA 100, 8666–8669 (2003).
Google Scholar
Turk, R. M., Chumachenko, N. V. & Yarus, M. Multiple translational products from a five-nucleotide ribozyme. Proc. Natl Acad. Sci. USA 107, 4585–4589 (2010).
Google Scholar
Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation without ribosomes. Nat. Chem. 13, 751–757 (2021).
Google Scholar
Forsythe, J. G. et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. Engl. 54, 9871–9875 (2015).
Google Scholar
Becker, S. et al. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018).
Google Scholar
Tetzlaff, C. N. & Richert, C. Synthesis and hydrolytic stability of 5′-aminoacylated oligouridylic acids. Tetrahedron Lett. 42, 5681–5684 (2001).
Google Scholar
Schweizer, M. P., McGrath, K. & Baczynskyj, L. The isolation and characterization of N-[9-(β–d-ribofuranosyl)-purin-6-ylcarbamoyl]glycine from yeast transfer RNA. Biochem. Biophys. Res. Commun. 40, 1046–1052 (1970).
Google Scholar
Perrochia, L. et al. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya. Nucleic Acids Res. 41, 1953–1964 (2012).
Google Scholar
Kimura-Harada, F., Von Minden, D. L., McCloskey, J. A. & Nishimura, S. N-[(9-β–d-Ribofuranosylpurin-6-yl)-N-methylcarbamoyl]threonine, a modified nucleoside isolated from Escherichia coli threonine transfer ribonucleic acid. Biochemistry 11, 3910–3915 (1972).
Google Scholar
Robertson, M. & Miller, S. Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world. Science 268, 702–705 (1995).
Google Scholar
Murphy, F. V., Ramakrishnan, V., Malkiewicz, A. & Agris, P. F. The role of modifications in codon discrimination by tRNALysUUU. Nat. Struct. Mol. Biol. 11, 1186–1191 (2004).
Google Scholar
Kitamura, A. et al. Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial tRNA-methyltransferase (MnmC2) functioning without the usually fused oxidase domain (MnmC1). J. Biol. Chem. 287, 43950–43960 (2012).
Google Scholar
Hutchby, M. et al. Hindered ureas as masked isocyanates: facile carbamoylation of nucleophiles under neutral conditions. Angew. Chem. Int. Ed. Engl. 48, 8721–8724 (2009).
Google Scholar
Ohkubo, A. et al. New thermolytic carbamoyl groups for the protection of nucleobases. Org. Biomol. Chem. 7, 687–694 (2009).
Google Scholar
Nainytė, M. et al. Amino acid modified RNA bases as building blocks of an early Earth RNA-peptide world. Chem. Eur. J. 26, 14856–14860 (2020).
Google Scholar
Schimpl, A., Lemmon, R. M. & Calvin, M. Cyanamide formation under primitive Earth conditions. Science 147, 149–150 (1965).
Google Scholar
Gartner, Z. J., Kanan, M. W. & Liu, D. R. Expanding the reaction scope of DNA-templated synthesis. Angew. Chem. Int. Ed. Engl. 41, 1796–1800 (2002).
Google Scholar
Liu, Z. et al. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 12, 1023–1028 (2020).
Google Scholar
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Google Scholar
Schneider, C. et al. Noncanonical RNA nucleosides as molecular fossils of an early Earth—generation by prebiotic methylations and carbamoylations. Angew. Chem. Int. Ed. Engl. 57, 5943–5946 (2018).
Google Scholar
Danger, G., Plasson, R. & Pascal, R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev. 41, 5416–5429 (2012).
Google Scholar
Bondalapati, S., Jbara, M. & Brik, A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins. Nat. Chem. 8, 407–418 (2016).
Google Scholar
Berg, P. The chemical synthesis of amino acyl adenylates. J. Biol. Chem. 233, 608–611 (1958).
Google Scholar
Wu, L.-F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl transfer in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).
Google Scholar