Strange IndiaStrange India


  • Norris, J. P., Cline, T. L., Desai, U. D. & Teegarden, B. J. Frequency of fast, narrow γ-ray bursts. Nature 308, 434–435 (1984).

    Article 
    ADS 

    Google Scholar 

  • Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Galama, T. J. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    Article 
    ADS 

    Google Scholar 

  • Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, L14 (2017).

    Article 
    ADS 

    Google Scholar 

  • Norris, J. P. Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms. Astrophys. J. 579, 386–403 (2002).

    Article 
    ADS 

    Google Scholar 

  • Norris, J. P. & Bonnell, J. T. Short gamma-ray bursts with extended emission. Astrophys. J. 643, 266–275 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gehrels, N. et al. A new γ-ray burst classification scheme from GRB 060614. Nature 444, 1044–1046 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64–66 (2017).

    Article 
    ADS 

    Google Scholar 

  • Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lipunov, V. M. et al. MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys. J. 850, 1 (2017).

    Article 

    Google Scholar 

  • Tanvir, N. R. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. 848, L27 (2017).

    Article 
    ADS 

    Google Scholar 

  • Soares-Santos, M. The Dark Energy Survey and The Dark Energy Camera GW-EM Collaboration et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, L16 (2017).

    Article 
    ADS 

    Google Scholar 

  • Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, L24 (2017).

    Article 
    ADS 

    Google Scholar 

  • Stamatikos, M. et al. GRB 211211A: Swift-BAT refined analysis. GRB Coordinates Network, Circular Service, No. 31209 (2021).

  • Mangan, J., Dunwoody, R. & Meegan, C.; Fermi GBM Team. GRB 211211A: Fermi GBM observation. GRB Coordinates Network, Circular Service, No. 31210 (2021).

  • Kaneko, Y., Bostancí, Z. F., Göğüş, E. & Lin, L. Short gamma-ray bursts with extended emission observed with Swift/BAT and Fermi/GBM. Mon. Not. R. Astron. Soc. 452, 824–837 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111–1148 (2002).

    Article 
    ADS 

    Google Scholar 

  • Lamb, G. P. et al. GRB jet structure and the jet break. Mon. Not. R. Astron. Soc. 506, 4163–4174 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Villar, V. A. et al. The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys. J. Lett. 851, L21 (2017).

    Article 
    ADS 

    Google Scholar 

  • Nicholl, M. et al. Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis. Mon. Not. R. Astron. Soc. 505, 3016–3032 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sekiguchi, Y., Kiuchi, K., Kyutoku, K. & Shibata, M. Dynamical mass ejection from binary neutron star mergers: radiation-hydrodynamics study in general relativity. Phys. Rev. D 91, 064059 (2015).

    Article 
    ADS 

    Google Scholar 

  • Metzger, B. D. & Fernández, R. Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon. Not. R. Astron. Soc. 441, 3444–3453 (2014).

    Article 
    ADS 

    Google Scholar 

  • Bauswein, A., Goriely, S. & Janka, H.-T. Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys. J. 773, 78 (2013).

    Article 
    ADS 

    Google Scholar 

  • Metzger, B. D., Thompson, T. A. & Quataert, E. A magnetar origin for the kilonova ejecta in GW170817. Astrophys. J. 856, 101 (2018).

    Article 
    ADS 

    Google Scholar 

  • Piro, A. L. & Kollmeier, J. A. Evidence for cocoon emission from the early light curve of SSS17a. Astrophys. J. 855, 103 (2018).

    Article 
    ADS 

    Google Scholar 

  • Gompertz, B. P., O’Brien, P. T., Wynn, G. A. & Rowlinson, A. Can magnetar spin-down power extended emission in some short GRBs? Mon. Not. R. Astron. Soc. 431, 1745–1751 (2013).

    Article 
    ADS 

    Google Scholar 

  • Bernardini, M. G. et al. Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity. Mon. Not. R. Astron. Soc. 446, 1129–1138 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nugent, A. E. et al. Short GRB host galaxies II: a legacy sample of redshifts, stellar population properties, and implications for their neutron star merger origins. Preprint at https://arxiv.org/abs/2206.01764 (2022).

  • Perley, D. A. et al. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: implications for the use of GRBs as tracers of cosmic star formation. Astrophys. J. 778, 128 (2013).

    Article 
    ADS 

    Google Scholar 

  • Cano, Z. Gamma-ray burst supernovae as standardizable candles. Astrophys. J. 794, 121 (2014).

    Article 
    ADS 

    Google Scholar 

  • Olivares, E. F. et al. The fast evolution of SN 2010bh associated with XRF 100316D. Astron. Astrophys. 539, A76 (2012).

    Article 

    Google Scholar 

  • King, A., Olsson, E. & Davies, M. B. A new type of long gamma-ray burst. Mon. Not. R. Astron. Soc. 374, 34–36 (2007).

    Article 
    ADS 

    Google Scholar 

  • Leibler, C. N. & Berger, E. The stellar ages and masses of short gamma-ray burst host galaxies: investigating the progenitor delay time distribution and the role of mass and star formation in the short gamma-ray burst rate. Astrophys. J. 725, 1202–1214 (2010).

    Article 
    ADS 

    Google Scholar 

  • Lyman, J. D. et al. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging. Mon. Not. R. Astron. Soc. 467, 1795–1817 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Metzger, B. D., Quataert, E. & Thompson, T. A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 385, 1455–1460 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Metzger, B. D., Arcones, A., Quataert, E. & Martínez-Pinedo, G. The effects of r-process heating on fallback accretion in compact object mergers. Mon. Not. R. Astron. Soc. 402, 2771–2777 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Desai, D., Metzger, B. D. & Foucart, F. Imprints of r-process heating on fall-back accretion: distinguishing black hole-neutron star from double neutron star mergers. Mon. Not. R. Astron. Soc. 485, 4404–4412 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fong, W., Berger, E., Margutti, R. & Zauderer, B. A. A decade of short-duration gamma-ray burst broadband afterglows: energetics, circumburst densities, and jet opening angles. Astrophys. J. 815, 102 (2015).

    Article 
    ADS 

    Google Scholar 

  • von Kienlin, A. et al. The fourth Fermi-GBM gamma-ray burst catalog: a decade of data. Astrophys. J. 893, 46 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bennett, C. L., Larson, D., Weiland, J. L. & Hinshaw, G. The 1% concordance Hubble constant. Astrophys. J. 794, 135 (2014).

    Article 
    ADS 

    Google Scholar 

  • Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Adriani, O. et al. Extended measurement of the cosmic-ray electron and positron spectrum from 11 GeV to 4.8 TeV with the calorimetric electron telescope on the International Space Station. Phys. Rev. Lett. 120, 261102 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tamura, T. et al. GRB 211211A: CALET Gamma-Ray Burst Monitor detection. GRB Coordinates Network, Circular Service, No. 31226 (2021).

  • Vedrenne, G. et al. SPI: the spectrometer aboard INTEGRAL. Astron. Astrophys. 411, 63–70 (2003).

    Article 

    Google Scholar 

  • Minaev, P. & Pozanenko, A.; GRB IKI FuN. GRB 211211A: redshift estimation and SPI-ACS/INTEGRAL detection. GRB Coordinates Network, Circular Service, No. 31230 (2021).

  • Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article 
    ADS 

    Google Scholar 

  • Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379–385 (2007).

    Article 
    ADS 

    Google Scholar 

  • Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gehrels, N. et al. Correlations of prompt and afterglow emission in Swift long and short gamma-ray bursts. Astrophys. J. 689, 1161–1172 (2008).

    Article 
    ADS 

    Google Scholar 

  • Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. AIP Conf. Proc. 1358, 373–376 (2011).

    Article 
    ADS 

    Google Scholar 

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

    ADS 

    Google Scholar 

  • Malesani, D. B. et al. GRB 211211A: NOT optical spectroscopy. GRB Coordinates Network, Circular Service, No. 31221 (2021).

  • Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  • Tody, D. IRAF in the nineties. ASP Conf. Ser. 52, 173–183 (1993).

    ADS 

    Google Scholar 

  • Hodapp, K. W. et al. The Gemini Near-Infrared Imager (NIRI). Publ. Astron. Soc. Pac. 115, 1388–1406 (2003).

    Article 
    ADS 

    Google Scholar 

  • Hook, I. M. et al. The Gemini–North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pac. 116, 425–440 (2004).

    Article 
    ADS 

    Google Scholar 

  • McLeod, B. et al. MMT and Magellan infrared spectrograph. Publ. Astron. Soc. Pac. 124, 1318 (2012).

    Article 
    ADS 

    Google Scholar 

  • Labrie, K., Anderson, K., Cárdenes, R., Simpson, C. & Turner, J. E. H. DRAGONS – Data Reduction for Astronomy from Gemini Observatory North and South. ASP Conf. Ser. 523, 321 (2019).

    ADS 

    Google Scholar 

  • Paterson, K. POTPyRI: Pipeline for Optical/infrared Telescopes in Python for Reducing Images. https://github.com/CIERA-Transients/POTPyRI/.

  • Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782–1800 (2010).

    Article 
    ADS 

    Google Scholar 

  • Seifert, W. et al. LUCIFER: a multimode NIR instrument for the LBT. Proc. SPIE 4841, 962–973 (2003).

    Article 
    ADS 

    Google Scholar 

  • Fontana, A. et al. The Hawk-I UDS and GOODS Survey (HUGS): survey design and deep K-band number counts. Astron. Astrophys. 570, A11 (2014).

    Article 

    Google Scholar 

  • Becker, A. HOTPANTS: High Order Transform of PSF ANd Template Subtraction. Astrophysics Source Code Library, record ascl:1504.004 (2015).

  • Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article 
    ADS 

    Google Scholar 

  • Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article 
    ADS 

    Google Scholar 

  • Kilpatrick, C. D. hst123. https://github.com/charliekilpatrick/hst123.

  • Kilpatrick, C. D. et al. Hubble Space Telescope observations of GW170817: complete light curves and the properties of the galaxy merger of NGC 4993. Astrophys. J. 926, 49 (2022).

    Article 
    ADS 

    Google Scholar 

  • Dolphin, A. DOLPHOT: stellar photometry. Astrophysics Source Code Library, record ascl:1608.013 (2016).

  • Brown, W. R., Geller, M. J., Fabricant, D. G. & Kurtz, M. J. V- and R-band galaxy luminosity functions and low surface brightness galaxies in the century survey. Astron. J. 122, 714–728 (2001).

    Article 
    ADS 

    Google Scholar 

  • Wolf, C. et al. The COMBO-17 survey: evolution of the galaxy luminosity function from 25 000 galaxies with 0.2 < z < 1.2. Astron. Astrophys. 401, 73–98 (2003).

    Article 
    ADS 

    Google Scholar 

  • Willmer, C. N. A. et al. The Deep Evolutionary Exploratory Probe 2 galaxy redshift survey: the galaxy luminosity function to z ~ 1. Astrophys. J. 647, 853–873 (2006).

    Article 
    ADS 

    Google Scholar 

  • Reddy, N. A. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z ~ 2–3: implications for the global stellar mass density and star formation in low-mass halos. Astrophys. J. 692, 778–803 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).

    Article 
    ADS 

    Google Scholar 

  • McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article 
    ADS 

    Google Scholar 

  • Fong, W. F. & Berger, E. The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013).

    Article 
    ADS 

    Google Scholar 

  • Blanchard, P. K., Berger, E. & Fong, W.-f The offset and host light distributions of long gamma-ray bursts: a new view From HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).

    Article 
    ADS 

    Google Scholar 

  • Fong, W.-f. et al. Short GRB host galaxies I: photometric and spectroscopic catalogs, host associations, and galactocentric offsets. Preprint at https://arxiv.org/abs/2206.01763 (2022).

  • Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article 
    ADS 

    Google Scholar 

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 
    ADS 

    Google Scholar 

  • Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar 

  • Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population inference with prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article 
    ADS 

    Google Scholar 

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Article 
    ADS 

    Google Scholar 

  • Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar 

  • Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41–58 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar 

  • Nugent, A. E. et al. The distant, galaxy cluster environment of the short GRB 161104A at z ~ 0.8 and a comparison to the short GRB host population. Astrophys. J. 904, 52 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moustakas, J., Kennicutt, J., Robert, C. & Tremonti, C. A. Optical star formation rate indicators. Astrophys. J. 642, 775–796 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tacchella, S. et al. Fast, slow, early, late: quenching massive galaxies at z ~ 0.8. Astrophys. J. 926, 134

  • Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blanchard, P. K. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VII. Properties of the host galaxy and constraints on the merger timescale. Astrophys. J. 848, L22 (2017).

    Article 
    ADS 

    Google Scholar 

  • Levan, A. J. et al. The environment of the binary neutron star merger GW170817. Astrophys. J. 848, L28 (2017).

    Article 
    ADS 

    Google Scholar 

  • Lamb, G. P. & Kobayashi, S. Electromagnetic counterparts to structured jets from gravitational wave detected mergers. Mon. Not. R. Astron. Soc. 472, 4953–4964 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lamb, G. P., Mandel, I. & Resmi, L. Late-time evolution of afterglows from off-axis neutron star mergers. Mon. Not. R. Astron. Soc. 481, 2581–2589 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pe’er, A. Dynamical model of an expanding shell. Astrophys. J. 752, L8 (2012).

    Article 
    ADS 

    Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar 

  • Gompertz, B. P. et al. A minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nat. Astron. https://doi.org/10.1038/s41550-022-01819-4 (2022).

  • Lamb, G. P. et al. Short GRB 160821B: a reverse shock, a refreshed shock, and a well-sampled kilonova. Astrophys. J. 883, 48 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cowperthwaite, P. S. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys. J. 848, L17 (2017).

    Article 
    ADS 

    Google Scholar 

  • Guillochon, J. et al. MOSFiT: modular open source fitter for transients. Astrophys. J. Suppl. Ser. 236, 6 (2018).

    Article 
    ADS 

    Google Scholar 

  • Arnett, W. D. Type I supernovae. I. Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nativi, L. et al. Can jets make the radioactively powered emission from neutron star mergers bluer? Mon. Not. R. Astron. Soc. 500, 1772–1783 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lippuner, J. & et, al Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon. Not. R. Astron. Soc. 472, 904–918 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Darbha, S. & Kasen, D. Inclination dependence of kilonova light curves from globally aspherical geometries. Astrophys. J. 897, 150 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Arcavi, I. The first hours of the GW170817 kilonova and the importance of early optical and ultraviolet observations for constraining emission models. Astrophys. J. 855, 23 (2018).

    Article 

    Google Scholar 

  • Radice, D., Perego, A., Bernuzzi, S. & Zhang, B. Long-lived remnants from binary neutron star mergers. Mon. Not. R. Astron. Soc. 481, 3670–3682 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ciolfi, R. & Kalinani, J. V. Magnetically driven baryon winds from binary neutron star merger remnants and the blue kilonova of 2017 August. Astrophys. J. 900, L35 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Coughlin, M. W., Dietrich, T., Margalit, B. & Metzger, B. D. Multimessenger Bayesian parameter inference of a binary neutron star merger. Mon. Not. R. Astron. Soc. 489, 91–96 (2019).

    Article 
    ADS 

    Google Scholar 

  • Dietrich, T. & Ujevic, M. Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Class. Quantum Gravity 34, 105014 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Gottlieb, O., Bromberg, O., Singh, C. B. & Nakar, E. The structure of weakly magnetized γ-ray burst jets. Mon. Not. R. Astron. Soc. 498, 3320–3333 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Duffell, P. C., Quataert, E., Kasen, D. & Klion, H. Jet dynamics in compact object mergers: GW170817 likely had a successful jet. Astrophys. J. 866, 3 (2018).

    Article 
    ADS 

    Google Scholar 

  • Matheson, T. et al. Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. Astrophys. J. 599, 394–407 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Clocchiatti, A., Suntzeff, N. B., Covarrubias, R. & Candia, P. The ultimate light curve of SN 1998bw/GRB 980425. Astron. J. 141, 163 (2011).

    Article 
    ADS 

    Google Scholar 

  • Cano, Z. et al. A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 568, A9 (2014).

    Article 

    Google Scholar 

  • Greiner, J. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cano, Z. et al. GRB 161219B/SN 2016jca: a low-redshift gamma-ray burst supernova powered by radioactive heating. Astron. Astrophys. 605, A107 (2017).

    Article 

    Google Scholar 

  • Waxman, E., Ofek, E. O. & Kushnir, D. Strong NIR emission following the long duration GRB 211211A: dust heating as an alternative to a kilonova. Preprint at https://arxiv.org/abs/2206.10710 (2022).

  • Santini, P. et al. The evolution of the dust and gas content in galaxies. Astron. Astrophys. 562, A30 (2014).

    Article 

    Google Scholar 

  • Calura, F. et al. The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star-forming galaxies. Mon. Not. R. Astron. Soc. 465, 54–67 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kasen, D., Metzger, B., Barnes, J., Quataert, E. & Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ukwatta, T. N. et al. Spectral lags and the lag–luminosity relation: an investigation with Swift BAT gamma-ray bursts. Astrophys. J. 711, 1073–1086 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ukwatta, T. N. et al. The lag–luminosity relation in the GRB source frame: an investigation with Swift BAT bursts. Mon. Not. R. Astron. Soc. 419, 614–623 (2012).

    Article 
    ADS 

    Google Scholar 

  • Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014).

    Article 
    ADS 

    Google Scholar 

  • Khan, S. et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys. Rev. D 93, 044007 (2016).

    Article 
    ADS 

    Google Scholar 

  • Dietrich, T., Bernuzzi, S. & Tichy, W. Closed-form tidal approximants for binary neutron star gravitational waveforms constructed from high-resolution numerical relativity simulations. Phys. Rev. D 96, 121501 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ashton, G. et al. BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • LIGO Scientific Collaboration. LIGO Algorithm Library – LALSuite. free software (GPL) (2018).

  • Andreoni, I. et al. Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programmes. Publ. Astron. Soc. Aust. 34, e069 (2017).

    Article 
    ADS 

    Google Scholar 

  • Díaz, M. C. et al. Observations of the first electromagnetic counterpart to a gravitational-wave source by the TOROS collaboration. Astrophys. J. 848, L29 (2017).

    Article 
    ADS 

    Google Scholar 

  • Drout, M. R. et al. Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358, 1570–1574 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Evans, P. A. et al. Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358, 1565–1570 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hu, L. et al. Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica. Sci. Bull. 62, 1433–1438 (2017).

    Article 

    Google Scholar 

  • Pian, E. et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pozanenko, A. S. et al. GRB 170817A associated with GW170817: multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. 852, L30 (2018).

    Article 
    ADS 

    Google Scholar 

  • Shappee, B. J. et al. Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358, 1574–1578 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smartt, S. J. et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).

    Article 
    ADS 

    Google Scholar 

  • Utsumi, Y. et al. J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817. Publ. Astron. Soc. Jpn. 69, 101 (2017).

    Article 
    ADS 

    Google Scholar 

  • Rastinejad, J. C. et al. Probing kilonova ejecta properties using a catalog of short gamma-ray burst observations. Astrophys. J. 916, 89 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Siegel, D. M. GW170817—the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur. Phys. J. A 55, 203 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110 (2016).

    Article 
    ADS 

    Google Scholar 

  • Troja, E. et al. The afterglow and kilonova of the short GRB 160821B. Mon. Not. R. Astron. Soc. 489, 2104–2116 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Fong, W. et al. The broadband counterpart of the short GRB 200522A at z = 0.5536: a luminous kilonova or a collimated outflow with a reverse shock? Astrophys. J. 906, 127 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fox, D. B. et al. The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature 437, 845–850 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Berger, E., Fong, W. & Chornock, R. An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. 774, L23 (2013).

    Article 
    ADS 

    Google Scholar 

  • Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • O’Connor, B. et al. A tale of two mergers: constraints on kilonova detection in two short GRBs at z ~ 0.5. Mon. Not. R. Astron. Soc. 502, 1279–1298 (2021).

    ADS 

    Google Scholar 

  • Ito, N. et al. GRB 211211A: MITSuME Akeno optical observation. GRB Coordinates Network, Circular Service, No. 31217 (2021).

  • Xiao, S. et al. The quasi-periodically oscillating precursor of a long gamma-ray burst from a binary neutron star merger. Preprint at https://arxiv.org/abs/2205.02186 (2022).

  • Kumar, H. et al. GRB 211211A: HCT and GIT optical follow up observations. GRB Coordinates Network, Circular Service, No. 31227 (2021).

  • Strausbaugh, R. & Cucchiara, A. GRB 211211A: LCO optical observations. GRB Coordinates Network, Circular Service, No. 31214 (2021).

  • Mao, J., Xin, Y.-X. & Bai, J.-M. GRB 211211A: GMG upper limit. GRB Coordinates Network, Circular Service, No. 31232 (2021).

  • Gupta, R. et al. GRB 211211A: observations with the 3.6m Devasthal Optical Telescope. GRB Coordinates Network, Circular Service, No. 31299 (2021).

  • Moskvitin, A., Spiridonova, O., Belkin, S., Pozanenko, A. & Pankov, N.; GRB IKI FuN. GRB 211211A: SAO RAS optical observations. GRB Coordinates Network, Circular Service, No. 31234 (2021).

  • Mei, A. et al. GeV emission from a compact binary merger. Nature https://doi.org/10.1038/s41586-022-05350-5404-7 (2022).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *