Strange IndiaStrange India


  • Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785–790 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Niemann, H. H., Schubert, W. D. & Heinz, D. W. Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect. 6, 101–112 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Poole, J., Day, C. J., von Itzstein, M., Paton, J. C. & Jennings, M. P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 16, 440–452 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chatterjee, S., Basak, A. J., Nair, A. V., Duraivelan, K. & Samanta, D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol. Lett. 368, fnaa220 (2021).

  • Foster, T. J., Geoghegan, J. A., Ganesh, V. K. & Hook, M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12, 49–62 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langley, R., Patel, D., Jackson, N., Clow, F. & Fraser, J. D. Staphylococcal superantigen super-domains in immune evasion. Crit. Rev. Immunol. 30, 149–165 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Rooijakkers, S. H. & van Strijp, J. A. Bacterial complement evasion. Mol. Immunol. 44, 23–32 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Okumura, R. et al. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature 532, 117–121 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walch, P. et al. Global mapping of Salmonella enterica–host protein–protein interactions during infection. Cell Host Microbe 29, 1316–1332.e12 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Penn, B. H. et al. An Mtb–human protein–protein interaction map identifies a switch between host antiviral and antibacterial responses. Mol. Cell 71, 637–648.e5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schweppe, D. K. et al. Host–microbe protein interactions during bacterial infection. Chem. Biol. 22, 1521–1530 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Weimer, B. C., Chen, P., Desai, P. T., Chen, D. & Shah, J. Whole cell cross-linking to discover host–microbe protein cognate receptor/ligand pairs. Front. Microbiol. 9, 1585 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicod, C., Banaei-Esfahani, A. & Collins, B. C. Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. Curr. Opin. Microbiol. 39, 7–15 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Martin, N. Technologies for proteome-wide discovery of extracellular host–pathogen interactions. J. Immunol. Res. 2017, 2197615 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, L. & Wright, G. J. Approaches to identify extracellular receptor–ligand interactions. Curr. Opin. Struct. Biol. 56, 28–36 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, E. Y. et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep. Methods 2, 100172 (2022).

  • Korotkova, N. et al. A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J. Biol. Chem. 281, 29120–29130 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Berger, C. N., Billker, O., Meyer, T. F., Servin, A. L. & Kansau, I. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol. Microbiol. 52, 963–983 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Brbic, M. et al. The landscape of microbial phenotypic traits and associated genes. Nucleic Acids Res. 44, 10074–10090 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med. 17, 1225–1227 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species: interpreting strains in microbiomes. Nat. Rev. Microbiol. 18, 491–506 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Crost, E. H. et al. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS ONE 8, e76341 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hall, A. B. et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 9, 103 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor–immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gur, C. et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology 8, e1581531 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abed, J. et al. Colon cancer-associated Fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front. Cell. Infect. Microbiol. 10, 400 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3259 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Matsui, S. et al. Human Fat2 is localized at immature adherens junctions in epidermal keratinocytes. J. Dermatol. Sci. 48, 233–236 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jonca, N. et al. Corneodesmosomes and corneodesmosin: from the stratum corneum cohesion to the pathophysiology of genodermatoses. Eur. J. Dermatol. 21, 35–42 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Johnson, N. C. XG: the forgotten blood group system. Immunohematology 27, 68–71 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Bourhis, E. et al. Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure 19, 1433–1442 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Carvalheiro, T. et al. Leukocyte associated immunoglobulin like receptor 1 regulation and function on monocytes and dendritic cells during inflammation. Front. Immunol. 11, 1793 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blondel, C. J. et al. CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity. Cell Host Microbe 20, 226–237 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sauer, M. M. et al. Catch-bond mechanism of the bacterial adhesin FimH. Nat. Commun. 7, 10738 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Adrian, J., Bonsignore, P., Hammer, S., Frickey, T. & Hauck, C. R. Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor. Curr. Biol. 29, 616–630.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baker, E. P. et al. Evolution of host–microbe cell adherence by receptor domain shuffling. eLife 11, e73330 (2022).

  • Xiang, H. et al. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog. 8, e1002751 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • UniProt, C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article 

    Google Scholar 

  • Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • andrewGhazi/basehitmodel: basehitmodel-0.1.0. Zenodo https://doi.org/10.5281/zenodo.10606151 (2024).

  • Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article 

    Google Scholar 

  • Zhou, X., Kao, M. C. & Wong, W. H. Transitive functional annotation by shortest-path analysis of gene expression data. Proc. Natl Acad. Sci. USA 99, 12783–12788 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wang, T. & Tang, H. The physical characteristics of human proteins in different biological functions. PLoS ONE 12, e0176234 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate — a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Beghini, F. et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife 10, e65088 (2021).

  • Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Segata, N., Bornigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *