Strange India All Strange Things About India and world


  • 1.

    Markov, I. L., Hu, J. & Kim, M. Progress and challenges in VLSI placement research. Proc. IEEE 103, 1985–2003 (2015).

    Article 

    Google Scholar 

  • 2.

    Tang, M. & Yao, X. A memetic algorithm for VLSI floorplanning. IEEE Trans. Syst. Man Cybern. B 37, 62–69 (2007).

    Article 

    Google Scholar 

  • 3.

    Breuer, M. A. A class of min-cut placement algorithms. In Proc. 14th Design Automation Conference (DAC 1977) 284–290 (IEEE, 1977).

  • 4.

    Fiduccia, C. M. & Mattheyses, R. M. A linear-time heuristic for improving network partitions. In 19th Design Automation Conference 175–181 (IEEE, 1982).

  • 5.

    Roy, J. A., Papa, D. A. & Markov, I. L. in Modern Circuit Placement (eds Nam, G.-J. & Cong, J. J.) 97–133 (Springer, 2007).

  • 6.

    Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Sechen, C. M. & Sangiovanni-Vincentelli, A. L. TimberWolf3.2: a new standard cell placement and global routing package. In 23rd ACM/IEEE Design Automation Conference 432–439 (IEEE, 1986).

  • 8.

    Sarrafzadeh, M., Wang, M. & Yang, X. in Modern Placement Techniques 57–89 (Springer, 2003).

  • 9.

    Luo, T. & Pan, D. Z. DPlace2.0: a stable and efficient analytical placement based on diffusion. In 2008 Asia and South Pacific Design Automation Conference 346–351 (IEEE, 2008).

  • 10.

    Hu, B. & Marek-Sadowska, M. Multilevel fixed-point-addition-based VLSI placement. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 1188–1203 (2005).

    Article 

    Google Scholar 

  • 11.

    Viswanathan, N., Pan, M. & Chu, C. in Modern Circuit Placement (eds Nam, G.-J. & Cong, J. J.) 193–228 (Springer, 2007).

  • 12.

    Kim, M., Lee, D., Markov, I. L. & Sim, P. L. An effective placement algorithm. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 31, 50–60 (2012).

    Article 

    Google Scholar 

  • 13.

    Lu, J. et al. ePlace: electrostatics-based placement using fast Fourier transform and Nesterov’s Method. ACM Trans. Des. Autom. Electron. Syst. 20, 17 (2015).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Cheng, C.-K., Kahng, A. B., Kang, I. & Wang, L. RePlAce: advancing solution quality and routability validation in global placement. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 38, 1717–1730 (2019).

    Article 

    Google Scholar 

  • 15.

    Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Aslam, B., Amjad, F. & Zou, C. C. Optimal roadside units placement in urban areas for vehicular networks. In 2012 IEEE Symposium on Computers and Communications (ISCC) 000423–000429 (IEEE, 2012).

  • 17.

    Medlock, J. & Galvani, A. P. Optimizing influenza vaccine distribution. Science 325, 1705–1708 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Cherniak, C., Mokhtarzada, Z., Rodriguez-Esteban, R. & Changizi, K. Global optimization of cerebral cortex layout. Proc. Natl Acad. Sci. USA 101, 1081–1086 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Langford, J. & Zhang, T. The Epoch-Greedy algorithm for multi-armed bandits with side information. In Advances in Neural Information Processing Systems Vol. 20, 817–824 (2008).

  • 20.

    Usunier, N., Synnaeve, G., Lin, Z. & Chintala, S. Episodic exploration for deep deterministic policies: an application to starcraft micromanagement tasks. In Proc. International Conference on Learning Representations (2017).

  • 21.

    Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. Neural combinatorial optimization with reinforcement learning. Preprint at https://arxiv.org/abs/1611.09940 (2016).

  • 22.

    Mirhoseini, A. et al. Device placement optimization with reinforcement learning. In Proc. International Conference on Machine Learning 2430–2439 (PMLR, 2017).

  • 23.

    Mirhoseini, A. et al. A hierarchical model for device placement. In Proc. International Conference on Learning Representations (2018).

  • 24.

    Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

  • 25.

    Obermeier, B., Ranke, H. & Johannes, F. M. Kraftwerk: a versatile placement approach. In Proc. 2005 International Symposium on Physical Design 242–244 (ACM, 2005).

  • 26.

    Spindler, P., Schlichtmann, U. & Johannes, F. M. Kraftwerk2 – a fast force-directed quadratic placement approach using an accurate net model. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 27, 1398–1411 (2008).

    Article 

    Google Scholar 

  • 27.

    Viswanathan, N. et al. RQL: global placement via relaxed quadratic spreading and linearization. In Proc. Design Automation Conference 453–458 (ACM/IEEE, 2007).

  • 28.

    Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proc. 32nd International Conference on Machine Learning 448–456 (JMLR, 2015).

  • 29.

    Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proc. International Conference on Machine Learning 807–814 (Omnipress, 2010).

  • 30.

    Zaruba, F. & Benini, L. The cost of application-class processing: energy and performance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI technology. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27, 2629–2640 (2019).

    Article 

    Google Scholar 

  • 31.

    RePlAce software – the OpenROAD project https://github.com/The-OpenROAD-Project/RePlAce (2020).

  • 32.

    Karypis, G. & Kumar, V. Hmetis: a hypergraph partitioning package http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview (1998).

  • 33.

    Alpert, C. J., Hagen, L. W. & Kahng, A. B. A hybrid multilevel/genetic approach for circuit partitioning. In Proc. APCCAS’96 – Asia Pacific Conference on 1012 Circuits and Systems 298–301 (IEEE, 1996).

  • 34.

    Caldwell, A. E., Kahng, A. B. & Markov, I. L. Improved algorithms for hypergraph 1014 bipartitioning. In Proc. 2000 Design Automation Conference 661–666 (IEEE, 2000).

  • 35.

    Chen, H. et al. An algebraic multigrid solver for analytical placement with layout 1017 based clustering. In Proc. 40th annual Design Automation Conference 794–799 (ACM, 2003); 10.1145/775832.776034.

  • 36.

    Alpert, C., Kahng, A., Nam, G.-J., Reda, S. & Villarrubia, P. A semi-persistent clustering technique for vlsi circuit placement. In Proc. 2005 International Symposium on Physical Design, 200–207 (ACM, 2005).

  • 37.

    Fogaça, M., Kahng, A. B., Reis, R. & Wang, L. Finding placement-relevant clusters with fast modularity-based clustering. In Proc. 24th Asia and South Pacific Design Automation Conference 569–576 (ACM, 2019); https://doi.org/10.1145/3287624.3287676.

  • 38.

    Fogaça, M. et al. On the superiority of modularity-based clustering for deter mining placement-relevant clusters. Integration 74, 32–44 (2020).

    Article 

    Google Scholar 

  • 39.

    Kahng, A. B. Futures for partitioning in physical design (tutorial). In Proc. 1998 International Symposium on Physical Design 190–193 (ACM, 1998); https://doi.org/10.1145/274535.274563.

  • 40.

    Shahookar, K. & Mazumder, P. VLSI cell placement techniques. ACM Comput. Surv. 23, 143–220 (1991).

    Article 

    Google Scholar 

  • 41.

    Caldwell, A. E., Kahng, A. B., Mantik, S., Markov, I. L. & Zelikovsky, A. On wirelength estimations for row-based placement. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 18, 1265–1278 (1999).

    Article 

    Google Scholar 

  • 42.

    Kahng, A. B. & Xu, X. Accurate pseudo-constructive wirelength and congestion estimation. In Proc. 2003 International Workshop on System-Level Interconnect Prediction 61–68 (ACM, 2003); https://doi.org/10.1145/639929.639942.

  • 43.

    Kahng, A. B. & Reda, S. A tale of two nets: studies of wirelength progression in physical design. In Proc. 2006 International Workshop on System-Level Interconnect Prediction |17–24 (ACM, 2006); https://doi.org/10.1145/1117278.1117282.

  • 44.

    Kim, M.-C., Viswanathan, N., Alpert, C. J., Markov, I. L. & Ramji, S. MAPLE: Multilevel Adaptive Placement for Mixed-Size Designs. In Proc. 2012 ACM International Symposium on International Symposium on Physical Design 193–200 (ACM, 2012).

  • 45.

    Nazi, A., Hang, W., Goldie, A., Ravi, S. & Mirhoseini, A. GAP: generalizable approximate graph partitioning framework. In International Conference on Learning Representations Workshop (2019).

  • 46.

    Zhou, Y. et al. GDP: generalized device placement for dataflow graphs. Preprint at https://arxiv.org/abs/1910.01578 (2019).

  • 47.

    Zhang, M. & Chen, Y. Link prediction based on graph neural networks. In Proc. International Conference on Neural Information Processing 5171–5181 (Curran Associates Inc., 2018).

  • 48.

    Xie, Z. et al. RouteNet: routability prediction for mixed-size designs using convolutional neural network. In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 1–8 (IEEE, 2018).

  • 49.

    hMETIS – hypergraph and circuit partitioning manual http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download.

  • 50.

    Dunlop, A. E. & Kernighan, B. W. A procedure for placement of standard-cell VLSI circuits. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 4, 92–98 (1985).

    Article 

    Google Scholar 

  • 51.

    Cheng C. K. & Kuh. E. S. Module placement based on resistive network optimization. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 3, 218–225 (1984).

    Article 

    Google Scholar 

  • 52.

    Tsay, R.-S., Kuh, E. & Hsu, C.-P. Proud: a fast sea-of-gates placement algorithm. In Proc. Design Automation Conference 1988, 318–323 (IEEE, 1988).

  • 53.

    Agnihotri, A., Ono, S. & Madden, P. Recursive bisection placement: Feng Shui 5.0 implementation details. In Proc. International Symposium on Physical Design 230–232 (ACM, 2005).

  • 54.

    Alpert, C. et al. Analytical engines are unnecessary in top-down partitioning based placement. VLSI Des. 10, 99–116 (2002).

    Article 

    Google Scholar 

  • 55.

    Kahng, A. B., Reda, S. & Wang, Q. Architecture and details of a high quality, large-scale analytical placer. In IEEE/ACM International Conference on Computer-Aided Design 2005 891–898 (IEEE, 2005).

  • 56.

    Kahng, A. B. & Wang, Q. An analytic placer for mixed-size placement and timing.driven placement. In IEEE/ACM International Conference on Computer Aided Design 2004 565–572 (IEEE, 2004).

  • 57.

    Kahng, A. B. & Wang, Q. Implementation and extensibility of an analytic placer. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 734–747 (2005).

    Article 

    Google Scholar 

  • 58.

    Chen, T.-C., Jiang, Z.-W., Hsu, T.-C., Chen, H.-C. & Chang, Y.-W. A High-quality mixed-size analytical placer considering preplaced blocks and density constraints. In Proc. 2006 IEEE/ACM International Conference on Computer-Aided Design 187–192 (ACM, 2006).

  • 59.

    Naylor, W., Donelly, R. & Sha, L. Non-linear optimization system and method for wire length and delay optimization for an automatic electric circuit placer. US Patent US6301693B1 (2001).

  • 60.

    Chen, T., Jiang, Z., Hsu, T., Chen, H. & Chang, Y. NTUplace3: an analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 27, 1228–1240 (2008).

    Article 

    Google Scholar 

  • 61.

    Kim, M.-C. & Markov, I. L. ComPLx: a competitive primal-dual Lagrange optimization for global placement. In Design Automation Conference 2012 747– 755 (ACM, 2012).

  • 62.

    Brenner, U., Struzyna, M. & Vygen, J. BonnPlace: placement of leading-edge chips by advanced combinatorial algorithms. Trans. Comp.-Aided Des. Integ.Cir. Sys. 27, 1607–1620 (2008).

    Article 

    Google Scholar 

  • 63.

    Lin, T., Chu, C., Shinnerl, J. R., Bustany, I. & Nedelchev, I. POLAR: placement based on novel rough legalization and refinement. In Proc. International Conference on Computer-Aided Design 357–362 (IEEE, 2013).

  • 64.

    Lu, J. et al. ePlace-MS: electrostatics-based placement for mixed-size circuits. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 34, 685–698 (2015).

    Article 

    Google Scholar 

  • 65.

    Lu, J., Zhuang, H., Kang, I., Chen, P. & Cheng, C.-K. Eplace-3d: electrostatics based placement for 3d-ics. In International Symposium on Physical Design 11–18 (ACM, 2016).

  • 66.

    Lin, Y. et al. DREAMPlace: deep learning toolkit-enabled GPU acceleration for modern VLSI placement. In Design Automation Conference 1–6 (ACM/IEEE, 2019).

  • 67.

    Kahng, A. B. Machine learning applications in physical design: recent results and directions. In Proc. 2018 International Symposium on Physical Design 68–73 (ACM, 2018); https://doi.org/10.1145/3177540.3177554.

  • 68.

    Kahng, A. B. Reducing time and effort in ic implementation: a roadmap of challenges and solutions. In Proc. 55th Annual Design Automation Conference (ACM, 2018); https://doi.org/10.1145/3195970.3199854.

  • 69.

    Ajayi, T. et al. Toward an open-source digital flow: first learnings from the openroad project. In Proc. 56th Annual Design Automation Conference 2019 (ACM, 2019); https://doi.org/10.1145/3316781.3326334.

  • 70.

    Huang, Y. et al. Routability-driven macro placement with embedded CNN-based prediction model. In Design, Automation & Test in Europe Conference & Exhibition 180–185 (IEEE, 2019).

  • 71.

    Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial optimization algorithms over graphs. Adv. Neural Inf. Process Syst. 30, 6348–6358 (2017).

    Google Scholar 

  • 72.

    Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. In Proc. International Conference on Learning Representations (2017).

  • 73.

    Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H. & Alizadeh, M. Learning generalizable device placement algorithms for distributed machine learning. Adv. Neural Inf. Process Syst. 32, 3981–3991 (2019).

    Google Scholar 

  • 74.

    Paliwal, A. et al. Reinforced genetic algorithm learning for optimizing computation graphs. In Proc. International Conference on Learning Representations (2020).

  • 75.

    Zhou, Y. et al. Transferable graph optimizers for ML compilers. Prepint at https://arxiv.org/abs/2010.12438 (2021).

  • 76.

    Barrett, T. D., Clements, W. R., Foerster, J. N. & Lvovsky, A. I. Exploratory combinatorial optimization with reinforcement learning. Preprint at https://arxiv.org/abs/1909.04063 (2020).

  • 77.

    Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. Prepint at https://arxiv.org/abs/1609.02907 (2016).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *