McCarthy, D. D. & Seidelmann, P. K. Time: From Earth Rotation to Atomic Physics (Cambridge Univ. Press, 2018).
Levine, J., Tavella, P. & Milton, M. Towards a consensus on a continuous coordinated universal time. Metrologia 60, 014001 (2023).
Google Scholar
Nelson, R. A. et al. The leap second: its history and possible future. Metrologia 38, 509–529 (2001).
Google Scholar
Loomis, B. D., Rachlin, K. E. & Luthcke, S. B. Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett. 46, 6910–6917 (2019).
Google Scholar
Cheng, M. & Ries, J. C20 and C30 variations from SLR for GRACE/GRACE-FO science applications. J. Geophys. Res. Solid Earth 128, e2022JB025459 (2023).
Google Scholar
Lombardi, M. A., Novick, A. N., Neville-Neil, G. & Cooke, B. Accurate, traceable, and verifiable time synchronization for world financial markets. J. Res. Natl Inst. Stand. Technol. 121, 436–463 (2016).
Addomine, M. in A General History of Horology (eds Turner, A. et al.) 137–152 (Oxford Univ. Press, 2022).
Glennie, P. & Thrift, N. Shaping the Day: A History of Timekeeping in England and Wales 1300–1800 (Oxford Univ. Press, 2009).
Kinns, R. Visual time signals for mariners between their introduction and 1947: a new perspective. J. Astron. Hist. Herit. 25, 601–713 (2022).
Google Scholar
Ellis, W. Lecture on the Greenwich system of time signals. Horol. J. 7, 85–91, 97–102, 109–114, 121–124 (1865).
Nye, J. & Rooney, D. in A General History of Horology (eds Turner, A. et al.) 495–531 (Oxford Univ. Press, 2022).
Nelson, G. K., Lombardi, M. A. & Okayama, D. T. NIST time and frequency radio stations: Www, WWVH, and WWVB. NIST Special Publication 250-67 (U.S. Department of Commerce, 2005).
Agnew, D. C. Time marks and clock corrections: a century of seismological timekeeping. Seismol. Res. Let. 91, 1417–1429 (2020).
Google Scholar
Bullard, E. C. An atomic standard of frequency and time interval: definition of the second of time. Nature 176, 282 (1955).
Google Scholar
Guinot, B. & Arias, E. F. Atomic time-keeping from 1955 to the present. Metrologia 42, S20–S30 (2005).
Google Scholar
Leschiutta, S. The definition of the ‘atomic’ second. Metrologia 42, S10–S19 (2005).
Google Scholar
Munk, W. H. & McDonald, G. The Rotation of the Earth: A Geophysical Discussion (Cambridge Univ. Press, 1960).
Ray, R. D. & Erofeeva, S. Y. Long-period tidal variations in the length of day. J. Geophys. Res. 119, 1498–1509 (2014).
Google Scholar
Gross, R. S. in Treatise on Geophysics: Geodesy (ed. Herring, T. A.) 215–261 (Elsevier, 2015).
Haigh, I. D. et al. The tides they are a-changin’: a comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Rev. Geophys. 58, e2018RG000636 (2020).
Google Scholar
Williams, J. G. & Boggs, D. H. Secular tidal changes in lunar orbit and Earth rotation. Celest. Mech. Dyn. Astron. 126, 89–129 (2016).
Google Scholar
Whitehouse, P. L. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf. Dynam. 6, 401–429 (2018).
Google Scholar
Peltier, W. R., Wu, P. P.-C., Argus, D. F., Li, T. & Velay-Vitow, J. Glacial isostatic adjustment: physical models and observational constraints. Rep. Prog. Phys. 85, 096801 (2022).
Google Scholar
Mitrovica, J. et al. Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: Resolving Munk’s enigma. Sci. Adv. 1, e1500679 (2015).
Google Scholar
Kim, A. J. et al. Ice age effects on the satellite-derived \({\dot{J}}_{2}\) datum: mapping the sensitivity to 3D variations in mantle viscosity. Earth Planet. Sci. Lett. 581, 117372 (2022).
Google Scholar
Seago, J. H. in Requirements for UTC and Civil Timekeeping on Earth (eds Seago, J. H. et al.) 107–125 (Univelt, American Astronautical Society, 2013).
Cheng, M., Tapley, B. & Ries, J. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 118, 740–747 (2013).
Google Scholar
Lau, H. C. P. et al. Inferences of mantle viscosity based on ice age data sets: Radial structure. J. Geophys. Res. Solid Earth 121, 6991–7012 (2016).
Google Scholar
Mitrovica, J. X. & Peltier, W. R. Present-day secular variations in the zonal harmonics of Earth’s geopotential. J. Geophys. Res. Solid Earth 98, 4509–4526 (1993).
Google Scholar
Cox, C. M. & Chao, B. F. Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297, 831–833 (2002).
Google Scholar
Roy, K. & Peltier, W. R. GRACE era secular trends in Earth rotation parameters: a global scale impact of the global warming process? Geophys. Res. Lett. L10306 (2011).
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis. Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge Univ. Press, 2021).
Barnoud, A. et al. Revisiting the global mean ocean mass budget over 2005–2020. Ocean Sci. 19, 321–334 (2023).
Google Scholar
Wilson, C. The Hill-Brown Theory of the Moon’s Motion: Its Coming-to-Be and Short-Lived Ascendancy (1877–1984) (Springer, 2010).
Kono, M. (ed.) Treatise on Geophysics, Vol. 5: Geomagnetism (series ed. Schubert, G.) (Elsevier, 2015).
Olson, P. (ed.) Treatise on Geophysics, Vol. 8: Core Dynamics (series ed. Schubert, G.) (Elsevier, 2015).
Langbein, J. Methods for rapidly estimating velocity precision from GNSS time series in the presence of temporal correlation: A new method and comparison of existing methods. J. Geophys. Res. Solid Earth 125, e2019JB019132 (2020).
Google Scholar
Constable, C. & Constable, S. A grand spectrum of the geomagnetic field. Phys. Earth Planet. Inter. 344, 107090 (2023).
Google Scholar
Stephenson, F. R., Morrison, L. V. & Hohenkerk, C. Y. Measurement of the Earth’s rotation: 720 BC to AD 2015. Proc. R. Soc. A 472, 20160404 (2016).
Google Scholar
Huber, P. J. Modeling the length of day and extrapolating the rotation of the Earth. J. Geod. 80, 283–303 (2006).
Google Scholar
Morrison, L. V., Stephenson, F. R., Hohenkerk, C. Y. & Zawilski, M. Addendum 2020 to ‘Measurement of the Earth’s rotation: 720 BC to AD 2015’. Proc. R. Soc. A 477, 20200776 (2021).
Google Scholar
Bell, S. A., Bangert, J. A. & Kaplan, G. H. in The History of Celestial Navigation: Rise of the Royal Observatory and Nautical Almanacs (eds Seidelmann, P. K. & Hohenkerk, C. Y.) 263–311 (Springer, 2020).
Burnicki, M. in Requirements for UTC and Civil Timekeeping on Earth (eds Seago, J. H. et al.) 35–46 (Univelt, American Astronautical Society, 2013).
Seidelmann, P. K. & Seago, J. H. Time scales, their users, and leap seconds. Metrologia 48, S186–S194 (2011).
Google Scholar
Seago, J. H., Seaman, R. L., Seidelmann, P. K. & Allen, S. L. (eds) Requirements for UTC and Civil Timekeeping on Earth (Univelt, American Astronautical Society, 2013).
Birth, K. in Law and Time (eds Benyon-Jones, S. M. & Grabham, E.) 196–211 (Routledge, 2018).
Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
Johnson, H. & Agnew, D. C. Monument motion and measurements of crustal velocities. Geophys. Res. Lett. 22, 2905–2908 (1995).
Google Scholar