Strange IndiaStrange India


  • Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, G. et al. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater. 33, e2005630 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, M. Y. & Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 29, 1605444 (2017).

    Article 

    Google Scholar 

  • Hu, Y. X. et al. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat. Photonics 16, 803–810 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cui, L.-S. et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photonics 14, 636–642 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wada, Y., Nakagawa, H., Matsumoto, S., Wakisaka, Y. & Kaji, H. Organic light emitters exhibiting very fast reverse intersystem crossing. Nat. Photonics 14, 643–649 (2020).

    Article 
    CAS 

    Google Scholar 

  • Luo, Y. et al. Ultra-fast triplet-triplet-annihilation-mediated high-lying reverse intersystem crossing triggered by participation of nπ*-featured excited states. Nat. Commun. 13, 6892 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gillett, A. J. et al. Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters. Nat. Mater. 21, 1150–1157 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aizawa, N., Harabuchi, Y., Maeda, S. & Pu, Y. J. Kinetic prediction of reverse intersystem crossing in organic donor-acceptor molecules. Nat. Commun. 11, 3909 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zysman-Colman, E. Molecular designs offer fast exciton conversion. Nat. Photonics 14, 593–594 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yu, Y., Mallick, S., Wang, M. & Börjesson, K. Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nat. Commun. 12, 3255 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stranius, K., Hertzog, M. & Borjesson, K. Selective manipulation of electronically excited states through strong light-matter interactions. Nat. Commun. 9, 2273 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Etherington, M. K., Gibson, J., Higginbotham, H. F., Penfold, T. J. & Monkman, A. P. Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nat. Commun. 7, 13680 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schleper, A. L. et al. Hot exciplexes in U-shaped TADF molecules with emission from locally excited states. Nat. Commun. 12, 6179 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, F. et al. Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals. Nat. Commun. 13, 2744 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. et al. The role of host–guest interactions in organic emitters employing MR-TADF. Nat. Photonics 15, 780–786 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gillett, A. J. et al. Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors. Nat. Commun. 12, 6640 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, X.-C. et al. Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design. Nat. Photonics 17, 280–285 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article 
    CAS 

    Google Scholar 

  • Segal, M., Baldo, M. A., Holmes, R. J., Forrest, S. R. & Soos, Z. G. Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68, 075211 (2003).

    Article 

    Google Scholar 

  • Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article 
    CAS 

    Google Scholar 

  • Cai, X. & Su, S.-J. Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic light-emitting diodes. Adv. Funct. Mater. 28, 1802558 (2018).

    Article 

    Google Scholar 

  • Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Article 

    Google Scholar 

  • Citation Report (Web of Science, accessed 16 February, 2024); www.webofscience.com/wos/woscc/citation-report/ad524515-2457-4194-9799-2409c8bd955f-cc8165d0.

  • Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chiu, C.-H. et al. A phosphorescent OLED with an efficiency roll-off lower than 1% at 10 000 cd m−2 achieved by reducing the carrier mobility of the donors in an exciplex co-host system. J. Mater. Chem. C 10, 4955–4964 (2022).

    Article 
    CAS 

    Google Scholar 

  • Giebink, N. C. & Forrest, S. R. Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phys. Rev. B 77, 235215 (2008).

    Article 

    Google Scholar 

  • Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Sci. Appl. 9, 105 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ligthart, A. et al. Effect of triplet confinement on triplet-triplet annihilation in organic phosphorescent host-guest systems. Adv. Funct. Mater. 28, 1804618 (2018).

    Article 

    Google Scholar 

  • Coehoorn, R., van Eersel, H., Bobbert, P. A. & Janssen, R. A. J. Kinetic Monte Carlo study of the sensitivity of OLED efficiency and lifetime to materials parameters. Adv. Funct. Mater. 25, 2024–2037 (2015).

    Article 
    CAS 

    Google Scholar 

  • Masui, K., Nakanotani, H. & Adachi, C. Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org. Electron. 14, 2721–2726 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hasan, M. et al. Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes. Nat. Commun. 13, 254 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thakur, K., Zee, B., Wetzelaer, G. J. A. H., Ramanan, C. & Blom, P. W. M. Quantifying exciton annihilation effects in thermally activated delayed fluorescence materials. Adv. Opt. Mater. 10, 2101784 (2021).

    Article 

    Google Scholar 

  • Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dias, F. B., Penfold, T. J. & Monkman, A. P. Photophysics of thermally activated delayed fluorescence molecules. Methods. Appl. Fluoresc. 5, 012001 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tsuchiya, Y. et al. Exact solution of kinetic analysis for thermally activated delayed fluorescence materials. J. Phys. Chem. A 125, 8074–8089 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsuo, K. & Yasuda, T. Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs. Chem. Sci. 10, 10687–10697 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. U. et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nat. Commun. 11, 1765 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, M. Y. et al. Deep-blue oxadiazole-containing thermally activated delayed fluorescence emitters for organic light-emitting diodes. ACS Appl. Mater. Interfaces 10, 33360–33372 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serevičius, T. et al. TADF parameters in the solid state: an easy way to draw wrong conclusions. J. Phys. Chem. A 125, 1637–1641 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niwa, A. et al. Triplet-triplet annihilation in a thermally activated delayed fluorescence emitter lightly doped in a host. Appl. Phys. Lett. 113, 083301 (2018).

    Article 

    Google Scholar 

  • Rossi, D., Palazzo, D., Di Carlo, A. & Auf der Maur, M. Drift‐diffusion study of the IQE roll‐off in blue thermally activated delayed fluorescence OLEDs. Adv. Electron. Mater. 6, 2000245 (2020).

    Article 
    CAS 

    Google Scholar 

  • Serevičius, T. et al. Emission wavelength dependence on the rISC rate in TADF compounds with large conformational disorder. Chem. Commun. 55, 1975–1978 (2019).

    Article 

    Google Scholar 

  • Kelly, D., Franca, L. G., Stavrou, K., Danos, A. & Monkman, A. P. Laplace transform fitting as a tool to uncover distributions of reverse intersystem crossing rates in TADF systems. J. Phys. Chem. Lett. 13, 6981–6986 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • BT.2020: Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange. ITN www.itu.int/rec/R-REC-BT.2020-2-201510-I/en (2015).

  • Nakanotani, H. et al. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5, 5016 (2014).

    Article 

    Google Scholar 

  • Duan, C. et al. Multi-dipolar chromophores featuring phosphine oxide as joint acceptor: a new strategy toward high-efficiency blue thermally activated delayed fluorescence dyes. Chem. Mat. 28, 5667–5679 (2016).

    Article 
    CAS 

    Google Scholar 

  • Yang, T. et al. Improving the efficiency of red thermally activated delayed fluorescence organic light‐emitting diode by rational isomer engineering. Adv. Funct. Mater. 30, 2002681 (2020).

    Article 
    CAS 

    Google Scholar 

  • Park, I. S., Lee, J. & Yasuda, T. High-performance blue organic light-emitting diodes with 20% external electroluminescence quantum efficiency based on pyrimidine-containing thermally activated delayed fluorescence emitters. J. Mater. Chem. C 4, 7911–7916 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhang, D., Cai, M., Zhang, Y., Zhang, D. & Duan, L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz. 3, 145–151 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lee, J., Aizawa, N. & Yasuda, T. Isobenzofuranone- and chromone-based blue delayed fluorescence emitters with low efficiency roll-off in organic light-emitting diodes. Chem. Mat. 29, 8012–8020 (2017).

    Article 
    CAS 

    Google Scholar 

  • Miwa, T. et al. Blue organic light-emitting diodes realizing external quantum efficiency over 25% using thermally activated delayed fluorescence emitters. Sci. Rep. 7, 284 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, I. S., Komiyama, H. & Yasuda, T. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence. Chem. Sci. 8, 953–960 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajamalli, P. et al. New molecular design concurrently providing superior pure blue, thermally activated delayed fluorescence and optical out-coupling efficiencies. J. Am. Chem. Soc. 139, 10948–10951 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. X. et al. Red organic light-emitting diode with external quantum efficiency beyond 20% based on a novel thermally activated delayed fluorescence emitter. Adv. Sci. 5, 1800436 (2018).

    Article 

    Google Scholar 

  • Furue, R. et al. Highly efficient red-orange delayed fluorescence emitters based on strong π-accepting dibenzophenazine and dibenzoquinoxaline cores: toward a rational pure-red OLED design. Adv. Opt. Mater. 6, 1701147 (2018).

    Article 

    Google Scholar 

  • Zhang, D., Song, X., Cai, M., Kaji, H. & Duan, L. Versatile indolocarbazole-isomer derivatives as highly emissive emitters and ideal hosts for thermally activated delayed fluorescent OLEDs with alleviated efficiency roll-off. Adv. Mater. 30, 1705406 (2018).

    Article 

    Google Scholar 

  • Ahn, D. H. et al. Highly twisted donor-acceptor boron emitter and high triplet host material for highly efficient blue thermally activated delayed fluorescent device. ACS Appl. Mater. Interfaces 11, 14909–14916 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Braveenth, R. et al. High efficiency green TADF emitters of acridine donor and triazine acceptor D–A–D structures. J. Mater. Chem. C 7, 7672–7680 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. X. et al. Red/near-infrared thermally activated delayed fluorescence OLEDs with near 100% internal quantum efficiency. Angew. Chem. Int. Ed. 58, 14660–14665 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cheng, Z. et al. Achieving efficient blue delayed electrofluorescence by shielding acceptors with carbazole units. ACS Appl. Mater. Interfaces 11, 28096–28105 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, F. M. et al. Rational molecular design of dibenzo[a,c]phenazine-based thermally activated delayed fluorescence emitters for orange-red OLEDs with EQE up to 22.0. ACS Appl. Mater. Interfaces 11, 26144–26151 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, F. M. et al. Efficient orange–red delayed fluorescence organic light‐emitting diodes with external quantum efficiency over 26%. Adv. Electron. Mater. 6, 1900843 (2019).

    Article 

    Google Scholar 

  • Balijapalli, U. et al. Utilization of multi-heterodonors in thermally activated delayed fluorescence molecules and their high performance bluish-green organic light-emitting diodes. ACS Appl. Mater. Interfaces 12, 9498–9506 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, A. et al. Doubly boron-doped TADF emitters decorated with ortho-donor groups for highly efficient green to red OLEDs. Chem. Eur. J. 26, 16793–16801 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lim, H. et al. Highly efficient deep-blue OLEDs using a TADF emitter with a narrow emission spectrum and high horizontal emitting dipole ratio. Adv. Mater. 32, e2004083 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Peng, C. C. et al. Highly efficient thermally activated delayed fluorescence via an unconjugated donor-acceptor system realizing EQE of over 30. Adv. Mater. 32, e2003885 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Yoon, J. et al. Asymmetric host molecule bearing pyridine core for highly efficient blue thermally activated delayed fluorescence OLEDs. Chem. Eur. J. 26, 16383–16391 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balijapalli, U. et al. Tetrabenzo[a,c]phenazine backbone for highly efficient orange-red thermally activated delayed fluorescence with completely horizontal molecular orientation. Angew. Chem. Int. Ed. 60, 19364–19373 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chan, C.-Y. et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photonics 15, 203–207 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. X. et al. Managing locally excited and charge-transfer triplet states to facilitate up-conversion in red TADF emitters that are available for both vacuum- and solution-processes. Angew. Chem. Int. Ed. 60, 2478–2484 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, Y. et al. Approaching nearly 40% external quantum efficiency in organic light emitting diodes utilizing a green thermally activated delayed fluorescence emitter with an extended linear donor-acceptor-donor structure. Adv. Mater. 33, e2103293 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Duan, C. et al. Manipulating charge‐transfer excitons by exciplex matrix: toward thermally activated delayed fluorescence diodes with power efficiency beyond 110 lm W−1. Adv. Funct. Mater. 31, 2102739 (2021).

    Article 
    CAS 

    Google Scholar 

  • Karthik, D. et al. Acceptor-donor-acceptor-type orange-red thermally activated delayed fluorescence materials realizing external quantum efficiency over 30% with low efficiency roll-off. Adv. Mater. 33, e2007724 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kim, H., Lee, Y., Lee, H., Hong, J. I. & Lee, D. Click-to-twist strategy to build blue-to-green emitters: bulky triazoles for electronically tunable and thermally activated delayed fluorescence. ACS Appl. Mater. Interfaces 13, 12286–12295 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagata, M. et al. Fused-nonacyclic multi-resonance delayed fluorescence emitter based on ladder-thiaborin exhibiting narrowband sky-blue emission with accelerated reverse intersystem crossing. Angew. Chem. Int. Ed. 60, 20280–20285 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tanaka, H. et al. Hypsochromic shift of multiple-resonance-induced thermally activated delayed fluorescence by oxygen atom incorporation. Angew. Chem. Int. Ed. 60, 17910–17914 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chen, J. X. et al. Optimizing intermolecular interactions and energy level alignments of red TADF emitters for high-performance organic light-emitting diodes. Small 18, e2201548 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gao, H. et al. Ultrapure blue thermally activated delayed fluorescence (TADF) emitters based on rigid sulfur/oxygen-bridged triarylboron acceptor: MR TADF and D-A TADF. J. Phys. Chem. Lett. 13, 7561–7567 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahmoudi, M. et al. Ornamenting of blue thermally activated delayed fluorescence emitters by anchor groups for the minimization of solid-state solvation and conformation disorder corollaries in non-doped and doped organic light-emitting diodes. ACS Appl. Mater. Interfaces 14, 40158–40172 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mamada, M. et al. Highly efficient deep‐blue organic light‐emitting diodes based on rational molecular design and device engineering. Adv. Funct. Mater. 32, 2204352 (2022).

    Article 
    CAS 

    Google Scholar 

  • Masimukku, N. et al. Bipolar 1,8-naphthalimides showing high electron mobility and red AIE-active TADF for OLED applications. Phys. Chem. Chem. Phys. 24, 5070–5082 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. Y. et al. A novel orange-red thermally activated delayed fluorescence emitter with high molecular rigidity and planarity realizing 32.5% external quantum efficiency in organic light-emitting diodes. Mater. Horiz. 9, 2425–2432 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, G. et al. A TADF emitter featuring linearly arranged spiro-donor and spiro-acceptor groups: efficient nondoped and doped deep-blue OLEDs with CIE(y) <0.1. Angew. Chem. Int. Ed. 60, 9598–9603 (2021).

    Article 
    CAS 

    Google Scholar 

  • Song, W. et al. [1,2,4]Triazolo[1,5-a]pyridine-based host materials for green phosphorescent anddelayed-fluorescence OLEDs with low efficiency roll-off. ACS Appl. Mater. Interfaces 10, 24689–24698 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, W., Li, J., Liu, D., Wang, F. & Zhang, S. Bipolar host materials for high-efficiency blue phosphorescent and delayed-fluorescence OLEDs. J. Mater. Chem. C 3, 12529–12538 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. Excited-state engineering of universal ambipolar hosts for highly efficient blue phosphorescence and thermally activated delayed fluorescence organic light-emitting diodes. Chem. Eng. J. 382, 122485 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ni, F. et al. Teaching an old acceptor new tricks: rationally employing 2,1,3-benzothiadiazole as input to design a highly efficient red thermally activated delayed fluorescence emitter. J. Mater. Chem. C 5, 1363–1368 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. L. et al. High-efficiency red organic light-emitting diodes with external quantum efficiency close to 30% based on a novel thermally activated delayed fluorescence emitter. Adv. Mater. 31, e1902368 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gong, X. et al. A red thermally activated delayed fluorescence emitter simultaneously having high photoluminescence quantum efficiency and preferentially horizontal emitting dipole orientation. Adv. Funct. Mater. 30, 1908839 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. Y. et al. Positive impact of chromophore flexibility on the efficiency of red thermally activated delayed fluorescence materials. Mater. Horiz. 8, 1297–1303 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, B. S. & Lee, J. Y. Engineering of mixed host for high external quantum efficiency above 25% in green thermally activated delayed fluorescence device. Adv. Funct. Mater. 24, 3970–3977 (2014).

    Article 
    CAS 

    Google Scholar 

  • Sun, J. W. et al. A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv. Mater. 26, 5684–5688 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seino, Y., Inomata, S., Sasabe, H., Pu, Y. J. & Kido, J. High-performance green OLEDs using thermally activated delayed fluorescence with a power efficiency of over 100 lm W−1. Adv. Mater. 28, 2638–2643 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sasabe, H. et al. Ultrahigh power efficiency thermally activated delayed fluorescent OLEDs by the strategic use of electron‐transport materials. Adv. Opt. Mater. 6, 1800376 (2018).

    Article 

    Google Scholar 

  • Zhang, X. et al. Host-free yellow-green organic light-emitting diodes with external quantum efficiency over 20% based on a compound exhibiting thermally activated delayed fluorescence. ACS Appl. Mater. Interfaces 11, 12693–12698 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Modulating the acceptor structure of dicyanopyridine based TADF emitters: Nearly 30% external quantum efficiency and suppression on efficiency roll-off in OLED. Chem. Eng. J. 401, 126107 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chen, C.-H. et al. New bipolar host materials for high power efficiency green thermally activated delayed fluorescence OLEDs. Chem. Eng. J. 442, 136292 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8, 326–332 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nat. Mater. 14, 330–336 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. W. et al. Thermally activated delayed fluorescence from azasiline based intramolecular charge-transfer emitter (DTPDDA) and a highly efficient blue light emitting diode. Chem. Mat. 27, 6675–6681 (2015).

    Article 
    CAS 

    Google Scholar 

  • Komatsu, R., Sasabe, H., Seino, Y., Nakao, K. & Kido, J. Light-blue thermally activated delayed fluorescent emitters realizing a high external quantum efficiency of 25% and unprecedented low drive voltages in OLEDs. J. Mater. Chem. C 4, 2274–2278 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lee, I. & Lee, J. Y. Molecular design of deep blue fluorescent emitters with 20% external quantum efficiency and narrow emission spectrum. Org. Electron. 29, 160–164 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lee, S. Y., Adachi, C. & Yasuda, T. High-efficiency blue organic light-emitting diodes based on thermally activated delayed fluorescence from phenoxaphosphine and phenoxathiin derivatives. Adv. Mater. 28, 4626–4631 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, T. A. et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid. Adv. Mater. 28, 6976–6983 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajamalli, P. et al. A method for reducing the singlet-triplet energy gaps of TADF materials for improving the blue OLED efficiency. ACS Appl. Mater. Interfaces 8, 27026–27034 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, J. W., Kim, K. H., Moon, C. K., Lee, J. H. & Kim, J. J. Highly efficient sky-blue fluorescent organic light emitting diode based on mixed cohost system for thermally activated delayed fluorescence emitter (2CzPN). ACS Appl. Mater. Interfaces 8, 9806–9810 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajamalli, P. et al. Thermally activated delayed fluorescence emitters with a m,m-di-tert-butyl-carbazolyl benzoylpyridine core achieving extremely high blue electroluminescence efficiencies. J. Mater. Chem. C 5, 2919–2926 (2017).

    Article 
    CAS 

    Google Scholar 

  • Xu, Y. et al. Highly efficient blue fluorescent OLEDs based on upper level triplet-singlet intersystem crossing. Adv. Mater. 31, e1807388 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bian, J. et al. Ambipolar self-host functionalization accelerates blue multi-resonance thermally activated delayed fluorescence with internal quantum efficiency of 100. Adv. Mater. 34, e2110547 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cheon, H. J., Woo, S. J., Baek, S. H., Lee, J. H. & Kim, Y. H. Dense local triplet states and steric shielding of a multi-resonance TADF emitter enable high-performance deep-blue OLEDs. Adv. Mater. 34, e2207416 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mei, Y., Liu, D., Li, J. & Wang, J. Accelerating PLQY and RISC rates in deep-blue TADF materials with the acridin-9(10H)-one acceptor by tuning the peripheral groups on carbazole donors. J. Mater. Chem. C 10, 16524–16535 (2022).

    Article 
    CAS 

    Google Scholar 

  • Matsushima, T. & Adachi, C. Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers. J. Appl. Phys. 103, 034501 (2008).

    Article 

    Google Scholar 

  • Kim, K.-H., Moon, C.-K., Sun, J. W., Sim, B. & Kim, J.-J. Triplet harvesting by a conventional fluorescent emitter using reverse intersystem crossing of host triplet exciplex. Adv. Opt. Mater. 3, 895–899 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zhao, B. et al. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host. Sci. Rep. 5, 10697 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hung, W. Y. et al. Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor. ACS Appl. Mater. Interfaces 8, 4811–4818 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lo, Y. C. et al. High-efficiency red and near-infrared organic light-emitting diodes enabled by pure organic fluorescent emitters and an exciplex-forming cohost. ACS Appl. Mater. Interfaces 11, 23417–23427 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, G. et al. Organoboron compounds constructed through the tautomerization of 1H-indole to 3H-indole for red OLEDs. J. Mater. Chem. C 9, 6834–6840 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bang, H.-S., Yun, J. & Lee, C. Improved lifetime and efficiency of green organic light-emitting diodes with a fluorescent dye (C545T)-doped hole transport layer. In Proc. SPIE, Organic Light Emitting Materials and Devices XI (eds. Kafafi, Z. H. & So, F.) 66551W-1–66551W-7 (SPIE, 2007).

  • Benor, A., Takizawa, S.-y, Pérez-Bolívar, C. & Anzenbacher, P. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT:PSS using UV–ozone exposure. Org. Electron. 11, 938–945 (2010).

    Article 
    CAS 

    Google Scholar 

  • Liu, X. K. et al. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex. Adv. Mater. 27, 2025–2030 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jang, H. J. & Lee, J. Y. Suppressed nonradiative decay of an exciplex by an inert host for efficiency improvement in a green fluorescence organic light-emitting diode. J. Phys. Chem. C 123, 26856–26861 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liang, B., Wang, J., Cheng, Z., Wei, J. & Wang, Y. Exciplex-based electroluminescence: over 21% external quantum efficiency and approaching 100 lm/W power efficiency. J. Phys. Chem. Lett. 10, 2811–2816 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, C.-J. et al. Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives. J. Mater. Chem. 20, 1560–1566 (2010).

    Article 
    CAS 

    Google Scholar 

  • Sych, G. et al. Exciplex-enhanced singlet emission efficiency of nondoped organic light emitting diodes based on derivatives of tetrafluorophenylcarbazole and tri/tetraphenylethylene exhibiting aggregation-induced emission enhancement. J. Phys. Chem. C 122, 14827–14837 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tasaki, S. et al. Realization of ultra‐high‐efficient fluorescent blue OLED. J. Soc. Inf. Disp. 30, 441–451 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhao, J. et al. Highly efficient green and red OLEDs based on a new exciplex system with simple structures. Org. Electron. 43, 136–141 (2017).

    Article 
    CAS 

    Google Scholar 

  • Shih, C. J. et al. Versatile exciplex-forming co-host for improving efficiency and lifetime of fluorescent and phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 10, 24090–24098 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reineke, S., Walzer, K. & Leo, K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys. Rev. B 75, 125328 (2007).

    Article 

    Google Scholar 

  • Fukagawa, H. et al. Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes. Adv. Mater. 24, 5099–5103 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwak, J. et al. New carbazole-based host material for low-voltage and highly efficient red phosphorescent organic light-emitting diodes. J. Mater. Chem. 22, 6351–6355 (2012).

    Article 
    CAS 

    Google Scholar 

  • Chen, C.-H. et al. Highly efficient orange and deep-red organic light emitting diodes with long operational lifetimes using carbazole–quinoline based bipolar host materials. J. Mater. Chem. C 2, 6183–6191 (2014).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. H., Shin, H., Kim, J. M., Kim, K. H. & Kim, J. J. Exciplex-forming co-host-based red phosphorescent organic light-emitting diodes with long operational stability and high efficiency. ACS Appl. Mater. Interfaces 9, 3277–3281 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, L. et al. High-performance exciplex-type host for multicolor phosphorescent organic light-emitting diodes with low turn-on voltages. ACS Sustain. Chem. Eng. 6, 8809–8815 (2018).

    Article 
    CAS 

    Google Scholar 

  • Liu, X.-Y. et al. 9-Silafluorene and 9-germafluorene: novel platforms for highly efficient red phosphorescent organic light-emitting diodes. J. Mater. Chem. C 6, 8144–8151 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. High-efficiency red organic light-emitting diodes based on a double-emissive layer with an external quantum efficiency over 30%. J. Mater. Chem. C 6, 7042–7045 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ito, T. et al. A series of dibenzofuran-based n-type exciplex host partners realizing high-efficiency and stable deep-red phosphorescent OLEDs. Chem. Eur. J. 25, 7308–7314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, Q. S. et al. Multichannel effect of triplet excitons for highly efficient green and red phosphorescent OLEDs. Adv. Opt. Mater. 8, 2000556 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).

    Article 
    CAS 

    Google Scholar 

  • Li, G. et al. Very high efficiency orange-red light-emitting devices with low roll-off at high luminance based on an ideal host-guest system consisting of two novel phosphorescent iridium complexes with bipolar transport. Adv. Funct. Mater. 24, 7420–7426 (2014).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Achieving above 30% external quantum efficiency for inverted phosphorescence organic light-emitting diodes based on ultrathin emitting layer. Org. Electron. 15, 2492–2498 (2014).

    Article 
    CAS 

    Google Scholar 

  • Seo, S. et al. Exciplex-triplet energy transfer: a new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V. Japn J. Appl. Phys. 53, 042102 (2014).

    Article 
    CAS 

    Google Scholar 

  • Shih, C. J. et al. Exciplex-forming cohost for high efficiency and high stability phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 10, 2151–2157 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsai, M. H. et al. 3-(9-Carbazolyl)carbazoles and 3,6-di(9-carbazolyl)carbazoles as effective host materials for efficient blue organic electrophosphorescence. Adv. Mater. 19, 862–866 (2007).

    Article 
    CAS 

    Google Scholar 

  • Su, S.-J., Takahashi, Y., Chiba, T., Takeda, T. & Kido, J. Structure-property relationship of pyridine-containing triphenyl benzene electron-transport materials for highly efficient blue phosphorescent OLEDs. Adv. Funct. Mater. 19, 1260–1267 (2009).

    Article 
    CAS 

    Google Scholar 

  • Lee, J., Lee, J.-I., Lee, J.-W. & Chu, H. Y. Effects of charge balance on device performances in deep blue phosphorescent organic light-emitting diodes. Org. Electron. 11, 1159–1164 (2010).

    Article 
    CAS 

    Google Scholar 

  • Jeon, S. O., Jang, S. E., Son, H. S. & Lee, J. Y. External quantum efficiency above 20% in deep blue phosphorescent organic light-emitting diodes. Adv. Mater. 23, 1436–1441 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, C. W. & Lee, J. Y. Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Adv. Mater. 25, 5450–5454 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fleetham, T., Li, G., Wen, L. & Li, J. Efficient ‘pure’ blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth. Adv. Mater. 26, 7116–7121 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Udagawa, K., Sasabe, H., Cai, C. & Kido, J. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30%. Adv. Mater. 26, 5062–5066 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J.-H. et al. An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage. Adv. Funct. Mater. 25, 361–366 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lim, H. et al. An exciplex host for deep-blue phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 9, 37883–37887 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Manipulation of thermally activated delayed fluorescence of blue exciplex emission: fully utilizing exciton energy for highly efficient organic light emitting diodes with low roll-off. ACS Appl. Mater. Interfaces 9, 21346–21354 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Idris, M. et al. Blue emissive fac/mer‐iridium (III) NHC carbene complexes and their application in OLEDs. Adv. Opt. Mater. 9, 2001994 (2021).

    Article 
    CAS 

    Google Scholar 

  • Inoue, M. et al. Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters. Chem. Phys. Lett. 644, 62–67 (2016).

    Article 
    CAS 

    Google Scholar 

  • Yang, M., Park, I. S. & Yasuda, T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics. J. Am. Chem. Soc. 142, 19468–19472 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oda, S. et al. Carbazole-based DABNA analogues as highly efficient thermally activated delayed fluorescence materials for narrowband organic light-emitting diodes. Angew. Chem. Int. Ed. 60, 2882–2886 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huang, T., Wang, Q., Meng, G., Duan, L. & Zhang, D. Accelerating radiative decay in blue through-space charge transfer emitters by minimizing the face-to-face donor-acceptor distances. Angew. Chem. Int. Ed. 61, e202200059 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lv, X. et al. Extending the pi-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission. Angew. Chem. Int. Ed. 61, e202201588 (2022).

    Article 
    CAS 

    Google Scholar 

  • Grüne, J., Bunzmann, N., Meinecke, M., Dyakonov, V. & Sperlich, A. Kinetic modeling of transient electroluminescence reveals TTA as an efficiency-limiting process in exciplex-based TADF OLEDs. J. Phys. Chem. C 124, 25667–25674 (2020).

    Article 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *