Strange IndiaStrange India


  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hsu, S.-L. et al. Emergence of the vortex state in confined ferroelectric heterostructures. Adv. Mater. 31, 1901014 (2019).

    Article 

    Google Scholar 

  • Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gruverman, A. et al. Vortex ferroelectric domains. J. Phys. Condens. Matter 20, 342201 (2008).

    Article 

    Google Scholar 

  • Nelson, C. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Caretta, L. et al. Non-volatile electric-field control of inversion symmetry. Nat. Mater. 22, 207–215 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, S. et al. Hexagonal close-packed polar-skyrmion lattice in ultrathin ferroelectric PbTiO3 films. Phys. Rev. Lett. 130, 226801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 33, 2000857 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rusu, D. et al. Ferroelectric incommensurate spin crystals. Nature 602, 240–244 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peters, J. J. P., Apachitei, G., Beanland, R., Alexe, M. & Sanchez, A. M. Polarization curling and flux closures in multiferroic tunnel junctions. Nat. Commun. 7, 13484 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schilling, A. et al. Domains in ferroelectric nanodots. Nano Lett. 9, 3359–3364 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kornev, I., Fu, H. & Bellaiche, L. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys. Rev. Lett. 93, 196104 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Naumov, I. & Bratkovsky, A. M. Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101, 107601 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Aguado-Puente, P. & Junquera, J. Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Hong, J., Catalan, G., Fang, D. N., Artacho, E. & Scott, J. F. Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010).

    Article 
    ADS 

    Google Scholar 

  • Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shao, Y.-T. et al. Emergent chirality in a polar meron to skyrmion phase transition. Nat. Commun. 14, 1355 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puebla, S. et al. Combining freestanding ferroelectric perovskite oxides with two-dimensional semiconductors for high performance transistors. Nano Lett. 22, 7457–7466 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, J. et al. Observation of moiré patterns in twisted stacks of bilayer perovskite oxide nanomembranes with various lattice symmetries. ACS Appl. Mater. Interfaces 14, 50386–50392 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Li, Y. et al. Stacking and twisting of freestanding complex oxide thin filmsAdv. Mater. 34, e2203187 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Devonshire, A. F. XCVI. Theory of barium titanate. London, Edinburgh, Dublin Philos. Mag. J. Sci. 40, 1040–1063 (1949).

    Article 
    CAS 

    Google Scholar 

  • Íñiguez, J., Ivantchev, S., Perez-Mato, J. M. & García, A. Devonshire-Landau free energy of BaTiO3 from first principles. Phys. Rev. B 63, 144103 (2001).

    Article 
    ADS 

    Google Scholar 

  • King-Smith, R. D. & Vanderbilt, D. First-principles investigation of ferroelectricity in perovskite compounds. Phys. Rev. B 49, 5828–5844 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • López-Pérez, J. & Íñiguez, J. Ab initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7. Phys. Rev. B 84, 075121 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bennett, D. Theory of polar domains in moiré heterostructures. Phys. Rev. B 105, 235445 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, J. et al. Polar Solomon rings in ferroelectric nanocrystals. Nat. Commun. 14, 3941 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez-Santolino, G. et al. Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. Nat. Nanotechnol. 12, 655–662 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pesquera, D. et al. Beyond substrates: strain engineering of ferroelectric membranes. Adv. Mater. 32, 2003780 (2020).

    Article 
    CAS 

    Google Scholar 

  • Borisevich, A. Y., Lupini, A. R. & Pennycook, S. J. Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl Acad. Sci. USA 103, 3044–3048 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishikawa, R., Lupini, A. R., Hinuma, Y. & Pennycook, S. J. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging. Ultramicroscopy 151, 122–129 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verbeeck, J. & Van Aert, S. Model based quantification of EELS spectra. Ultramicroscopy 101, 207–224 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomas, P. J. & Twesten, R. D. A simple, model based approach for robust quantification of EELS spectra and spectrum-images. Microsc. Microanal. 18, 968–969 (2012).

    Article 
    ADS 

    Google Scholar 

  • Galindo, P. L. et al. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosez, Ph., Michenaud, J. & Gonze, X. Dynamical atomic charges: The case of ABO3 compounds. Phys. Rev. B 58, 6224–6240 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smeaton, M. A., Schnitzer, N., Zheng, H., Mitchell, J. F. & Kourkoutis, L. F. Channeling-Induced Artifacts in Atom Tracking of Cations in Distorted Perovskites Imaged by HAADF-STEM. Microsc. Microanal. 28, 1736–1738 (2022).

    Article 
    ADS 

    Google Scholar 

  • Oveisi, E., Spadaro, M. C., Rotunno, E., Grillo, V. & Hébert, C. Insights into image contrast from dislocations in ADF-STEM. Ultramicroscopy 200, 139–148 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar 

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Harada, J., Axe, J. D. & Shirane, G. Neutron-scattering study of soft modes in cubic BaTiO3. Phys. Rev. B 4, 155–162 (1971).

    Article 
    ADS 

    Google Scholar 

  • Yudin, P. V., Ahluwalia, R. & Tagantsev, A. K. Upper bounds for flexoelectric coefficients in ferroelectrics. Appl. Phys. Lett. 104, 082913 (2014).

    Article 
    ADS 

    Google Scholar 

  • Wang, B., Gu, Y., Zhang, S. & Chen, L.-Q. Flexoelectricity in solids: Progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ma, W. & Cross, L. E. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014).

    Article 
    ADS 

    Google Scholar 

  • Dreyer, C. E., Stengel, M. & Vanderbilt, D. Current-density implementation for calculating flexoelectric coefficients. Phys. Rev. B 98, 075153 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *