Strange IndiaStrange India


  • Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, S. et al. Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv. Meteorol. 2014, 965936 (2014).

    Article 

    Google Scholar 

  • Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abramoff, R. Z. et al. Improved global-scale predictions of soil carbon stocks with Millennial Version 2. Soil Biol. Biochem. 164, 108466 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G. & Bonan, G. B. Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geosci. Model Dev. 8, 1789–1808 (2015).

    Article 
    ADS 

    Google Scholar 

  • Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).

    Article 
    ADS 

    Google Scholar 

  • Bruni, E. et al. Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments. Biogeosciences 18, 3981–4004 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Manzoni, S. et al. Optimal metabolic regulation along resource stoichiometry gradients. Ecol. Lett. 20, 1182–1191 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. Modeling the effects of litter stoichiometry and soil mineral N availability on soil organic matter formation using CENTURY-CUE (v1.0). Geosci. Model Dev. 11, 4779–4796 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Feng, J., He, K., Zhang, Q., Han, M. & Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Change Biol. 28, 3426–3440 (2022).

    Article 
    CAS 

    Google Scholar 

  • Panchal, P., Preece, C., Peñuelas, J. & Giri, J. Soil carbon sequestration by root exudates. Trends Plant Sci. 27, 749–757 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujisaki, K. et al. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: a synthesis. Agric. Ecosyst. Environ. 259, 147–158 (2018).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *