Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).
Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).
Google Scholar
Shu, H. et al. Microcomb-driven silicon photonic systems. Nature 605, 457–463 (2022).
Google Scholar
Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).
Google Scholar
Sancho, J. et al. Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012).
Google Scholar
Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).
Google Scholar
Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).
Google Scholar
Zhang, W. & Yao, J. Photonic integrated field-programmable disk array signal processor. Nat. Commun. 11, 406 (2020).
Google Scholar
Zhang, W. & Yao, J. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing. Nat. Commun. 9, 1396 (2018).
Google Scholar
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Google Scholar
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Google Scholar
Ilderem, V. The technology underpinning 5G. Nat. Electron. 3, 5–6 (2020).
Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).
Google Scholar
Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).
Google Scholar
Zhu, C. et al. Silicon integrated microwave photonic beamformer. Optica 7, 1162–1170 (2020).
Google Scholar
Tao, Y. et al. Fully on-chip microwave photonic instantaneous frequency measurement system. Laser Photonics Rev., 16, 2200158 (2022).
Rahim, A. et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photonics 3, 024003 (2021).
Google Scholar
Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).
Google Scholar
Zhuang, L., Roeloffzen, C. G., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).
Google Scholar
Dong, J. et al. Compact, flexible and versatile photonic differentiator using silicon Mach–Zehnder interferometers. Opt. Express 21, 7014–7024 (2013).
Google Scholar
Liu, W., Zhang, W. & Yao, J. Silicon-based integrated tunable fractional order photonic temporal differentiators. J. Lightwave Technol. 35, 2487–2493 (2017).
Google Scholar
Slavík, R. et al. Photonic temporal integrator for all-optical computing. Opt. Express 16, 18202–18214 (2008).
Google Scholar
Xu, X. et al. Microcomb-based photonic RF signal processing. IEEE Photonic Technol. Lett. 31, 1854–1857 (2019).
Google Scholar
Minasian, R. A., Chan, E. & Yi, X. Microwave photonic signal processing. Opt. Express 21, 22918–22936 (2013).
Google Scholar
Park, Y., Azaña, J. & Slavík, R. Ultrafast all-optical first-and higher-order differentiators based on interferometers. Opt. Lett. 32, 710–712 (2007).
Google Scholar
Zheng, A. et al. Tunable fractional-order differentiator using an electrically tuned silicon-on-isolator Mach–Zehnder interferometer. Opt. Express 22, 18232–18237 (2014).
Google Scholar
Ferrera, M. et al. On-chip CMOS-compatible all-optical integrator. Nat. Commun. 1, 29 (2010).
Google Scholar
Li, M., Jeong, H.-S., Azaña, J. & Ahn, T.-J. 25-terahertz-bandwidth all-optical temporal differentiator. Opt. Express 20, 28273–28280 (2012).
Google Scholar
Morton, P. A. et al. High-power, high-linearity, heterogeneously integrated III–V on Si MZI modulators for RF photonics systems. IEEE Photonics J. 11, 1–10 (2019).
Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).
Google Scholar
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).
Google Scholar
Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, 4396 (2023).
Google Scholar
Zhang, M., Wang, C., Kharel, P., Zhu, D. & Lončar, M. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652–667 (2021).
Google Scholar
Zhang, Y. et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate. Photonics Res. 10, 2380–2387 (2022).
Google Scholar
Mercante, A. J. et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express 26, 14810–14816 (2018).
Google Scholar
He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).
Google Scholar
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Google Scholar
Ahmed, A. N. R. et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Opt. Lett. 45, 1112–1115 (2020).
Google Scholar
Feng, H. et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Res. 10, 2366–2373 (2022).
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).
Google Scholar
Escalé, M. R., Pohl, D., Sergeyev, A. & Grange, R. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett. 43, 1515–1518 (2018).
Google Scholar
Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).
Google Scholar
Zhou, J. et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett. 37, 084201 (2020).
Google Scholar
Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28, 24452–24458 (2020).
Google Scholar
Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).
Google Scholar
Zhang, M., Yu, F., Zhao, J., Zhang, L. & Li, Q. BEFD: boundary enhancement and feature denoising for vessel segmentation. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Martel, A. L. et al.) 775–785 (Springer, 2020).
Kharel, P., Reimer, C., Luke, K., He, L. & Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357–363 (2021).
Google Scholar
Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).
Google Scholar
Tan, S. et al. High-order all-optical differential equation solver based on microring resonators. Opt. Lett. 38, 3735–3738 (2013).
Google Scholar
Pan, S. & Yao, J. UWB-over-fiber communications: modulation and transmission. J. Lightwave Technol. 28, 2445–2455 (2010).
Google Scholar
Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017).
Google Scholar
Wen, H. et al. Few-mode fibre-optic microwave photonic links. Light: Sci. Appl. 6, 17021 (2017).
Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
Google Scholar
Ye, K. et al. Surface acoustic wave stimulated Brillouin scattering in thin-film lithium niobate waveguides. Preprint at https://doi.org/10.48550/arXiv.2311.14697 (2023).
Rodrigues, C. C. et al. On-chip backward stimulated Brillouin scattering in lithium niobate waveguides. Preprint at https://doi.org/10.48550/arXiv.2311.18135 (2023).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (eds Bajcsy, R. et al.) 770–778 (IEEE, 2016).
Chen, L., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proc. European Conference on Computer Vision (eds Ferrari, V. et al.) 801–818 (Springer, 2018).
Milletari, F., Navab, N. & Ahmadi, S. A. V-net: fully convolutional neural networks for volumetric medical image segmentation. In Proc. International Conference on 3D Vision 565–571 (IEEE, 2016).
Codella, N. C. et al. Skin lesion analysis toward melanoma detection. In Proc. International Symposium on Biomedical Imaging 168–172 (IEEE, 2018).
Wang, B., de Lima, T. F., Shastri, B. J., Prucnal, P. R. & Huang, C. Multi-wavelength photonic neuromorphic computing for intra and interchannel distortion compensations in WDM optical communication systems. IEEE J. Sel. Top. Quantum Electron. 29, 7400212 (2022).
Huang, C. et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).
Google Scholar
Huang, C. et al. High-capacity space-division multiplexing communications with silicon photonic blind source separation. J. Lightwave Technol. 40, 1617–1632 (2022).
Google Scholar
Gao, J., Han, X., Lei, X. & Yu, Y. TEC power consumption in laser array packaging. Opt. Quantum Electron. 49, 1–13 (2017).
Desurvire, E. & Zervas, M. N. Erbium-doped fiber amplifiers: principles and applications. Phys. Today 48, 56–58 (1995).
Siew, S. Y. et al. Review of silicon photonics technology and platform development. J. Lightwave Technol. 39, 4374–4389 (2021).
Google Scholar
Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Zenodo https://doi.org/10.5281/zenodo.10464317 (2024).
Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Zenodo https://doi.org/10.5281/zenodo.10463902 (2024).